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POLYNOMIALS WITH RESTRICTED COEFFICIENTS AND THEIR APPLICATIONS

PROMETHEUS INC.

ABSTRACT

Certain design restrictions growing out of antenna theory

yield a beautiful class of complex variables problems. Our work was

devoted to formulating these problems in mathematical terms, solving

some of them, and beginning work on the others. One important result

achieved was the development of a new method of estimating Gaussian-

type exponential sums. Improvements of our previous results in null

steering and notch filtering were also attained. Other findings were

obtained in the areas of: the robustness of polynomials with

unimodular coefficients; the effect of errors in such standard and

Crucial approximations as the far-field, Fresnel, and Doppler

compensation, the effect of errors in the noise covariance matrix; and

the Parabolic Equation Method in underwatgr acoustics.
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STATEMENT OF WORK

1. Convert the Kahane "Gauss Sums + Probabilistic Choices" proof into

H@ a constructive one, and apply these polynomials to the design of low

peak-factor signals and other engineering problems.

2. Investigate other possible methods of constructing Kahane-type

polynomials.

3. Investigate employing the Byrnes and Kahane polynomials to design

new reflection phase gratings, and consider the application of these

ideas to the quieting of an objects response to radar and active

sonar, and the design of baffles used to quiet machinery noise from

submarines.

4. Consider the incorporation of the Prometheus methods of

analytically choosing shading coefficients into adaptive antenna

problems.

* 5. Determine the applicability of Kahane's methods to the Erdos

problem involving polynomials with coefficients ±1, and investigate

the minimum L* norm of such polynomials.

* 6. Investigate the minimization of the peak-factor in an inverse

Fourier transform, given the amplitude spectrum.

N 7. Conduct research into whether polynomials based upon the Byrnes

construction can be used to produce notched filters with more than one

notch.

C'
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I. INTRODUCTION

Polynomials with restricted coefficients have been objects of

intense interest throughout twentieth century mathematics and

engineering. Despite the large amount of effort which has been

directed towards analyzing their properties, many deep and fascinating

questions remain. We continue our attack upon these problems,

employing both traditional and novel methods. This report, with its

appendices, presents the details of our recent work.

We have seen that certain design restrictions growing out of

* antenna theory yield a beautiful class of complex variables problems.

Moreover these problems form an integral part of classical

mathematical analysis, as the study of such polynomials was initiated

by G. H. Hardy [46,p. 199), and furthered by J. E. Littlewood [28-301,

P. Erdos L203, and many others. Our research continues to focus upon

both aspects of this remarkable intertwining between the disciplines

of pure mathematics and engineering.

The great success of J. P. Kahane [26) in solving the

LittlewLxid conjecture, by showing that there indeed exist polynomials

with unimodular coefficients whose modulus is essentially constant on

the unit circle, lead us to reconsider the Erdos variant of this

problem. Namely, do such polynomials exist when the coefficients are

further restricted to be +1? Kahane's answer to Littlewood's question

V completed a series of researches by Beller 12-5], Byrnes E13, 14),

Kor,,er (273, New-man (3-5, 343, and Littlewood himself. As just

mentioned the answer was an unqualified yest near constancy for

polynomials with unimodular coefficients is definitely available. In



contrast to this there has been very little progress in answering

Erdos' question, and this has been one focus of our research.

We are conducting a two pronged attack upon the Erdos

question. One tack we are taking is to attempt to exploit the

breakthrough of Kahane, which we believe was due to his ingenious use

• of randomness and probability in his construction. Behind his and

previous approaches was the idea of Gauss, viz. the 'Gauss Sums.4 To

put it quite simply we feel that Littlewood's problem was vanquished

by the "equationm

Kahane=Gauss Sums + Probabilistic Choices

E Sir.ce the Gauss Sums can also be written as polynomials with

coefficients ±1, we devoted considerable study to such sums. Our

entirely new approach to estimating them, together with the results

achieved thusfar, are described below.

The above describes, to some extent, the first prong of our

attack on the Erdos problem. The second is our approach to the

possibility of a negative answer to the Erdos question. Indeed

numerical evidence seems to favor this choice. A computational scheme

based upon the Bose-Einstein model for Statistical Mechanics has

produced calculations of autocorrelations which seemn to insist that

S the L4 norm of a +1 type polynomial is >(6/5) 1 4(n)I2, and this if

true would surely yield the "no" answer to the Erdos problem. Since

this Bose-Einstein model can be followed up theoretically, and not

only numerically, we envision a possible proof of the negative answer,

if such is the case. What we have proven thusfar is that the L0 norm

of the well-known Shapiro polynomials of +1 type is (4/3)'1 4 (n)9ea

,-2-



asymptotically. Details of these results appear below, and in

~ Appendix B.

The locations of zeroes of polynomials with restricted

1 coefficients is of interest from both a theoretical and a practical

IsO •point of view. Under some circumstances, such as those encountered in

peak power limited transmitting [40], the design of low peak-factor

[393 and low crest factor [7) signals, and the design of digital test

signals E36], one wants the modulus of the polynomial to be as close

to constant as possible on the unit circle. It seems reasonable that

such a condition would be achieved by polynomials ohose zeroes are as

far as possible from the unit circle. Certain applications, on the

other hand, require zeroes at specific locations on the unit circle.

For example, the classical mathematical problem in notch filter design

is to produce a polynomial whose magnitude on the unit circle is close

to constant in almost all directions, but which has a small number of

deep nulls ('notches') at specified points. In [16) the construction

of [13) is employed to produce such a polgnomial having one null, with

the added feature that all coefficients have the same magnitude. We

have expanded upon these methods to produce multiple notches, while

maintaining the near constancy of the magnitude of the polynomial at

all points on the unit circle excluding small neighborhoods of tho

tnotches. Again, the results appear below.

Null steering is a crucial application which requires locating

zeroes at specific points on the unit circle. There are several

factors which must be considered in the design of null steering

algorithms. In addition to the basic problem of placing the nulls the



I main beam must be steered, the width of the main lobe controlled, and

the sidelobe levels must be sufficiently below that of the main lobe.

Control of the sidelobe level is usually achieved by attenuating the

shading coefficients as one moves away from the center of the array.

Often these attenuation factors (Chebyshev, Taylor, etc.) are chosen

* •in advance, and may not be easily altered once the array is in place.

This leads directly to a beautiful mathematical question, similar to

the peak-factor problem in engineering discussed earlier, which we

W ý have attacked by the methods employed to study polynomials with

coefficients of magnitude one:

Given the magnitude of the coefticients of a polynomial P, a

finite subset S of the unit circle C, and a point p(C distinct

from those in S, choose the phases of these coefficients so

that P(z)=O for all z(S, the maximum on C of IP(z)I occurs at

z-p, and the maximum of !P(z)t on a subset of C excluding an

appropriatr interval (the beamwidth) around p is as small as

possible.

Currently the most widely used class of null steering methods

is known as adaptive nulling [l,9,24,25,32,45]. Adaptive arrays have

developed over the past twenty-five years as the preferred method of

reducing the performance deterioration in signal reception systems

which is inevit&bly caused by undesired noise entering the system.

SoIuces for this noise include multipath affects, electronic

countermeasures, clutter scatterer returns, antenna location errors,

array element thermal noise, etc. The proliferation of such noise

sources has greatly increased the importance of interference

. • -4-



suppression in essentially all applications. Although such adaptive

methods as the Widrow least mean squares (LMS) and Howells-Applebaum

sidelobe canceller have achieved considerable success, difficult

problems remain. Foremost among these are poor transient response,

f signal cancellation resulting from interaction between signal and

interference, excessive computation time, and sidelobe degradation

~ • when jammer cancellation is attempted. A secondary problem is the

lack of control in adaptive algorithms of the dynamic range of the

~ weights.

These methods are indirect adaptive schemes, they do not

explicitly form an estimate of the directions of arrival of

" • interfering sources or explicitly steer nulls in those directions. A

scheme in which these two tasks are actually performed can be called a

S direct adaptive algorithm. Thus one approach to the solution of such

problems is to complement an appropriate indirect adaptive algorithm

with the analytic null steering methods described in C17]. In this

way the actual noise suppression achieved can be enhanced beyond that

which would be available through either adaptive or analytic methods

* wxcluzivoly. We have begun to explore the pcssibility of this *Direct
'4

Adaptive Antenna System,* and will continue this work during Phase I1.

Other questions which havg been the focus of our research

effort, and which we report on below, include: the robustness of

polynomials with unimodular coefficients; the effect of errors in such

standard and crucial approximations as the far-field, Fresnel, and

Doppler compensation; the effect of errors in the noise covariance

'_4 matrix; and the Parabolic Equation Method in underwater acoustics.

-5-
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II. WEYL SUMS

In connection with the beamforming problems under

consideration, we were required to obtain certain trigonometric sum

estimatez. In particular, sums such as

ta a lskn

made their appearance, and we desired "Gaussian-like' estimates for

these "Gaussian-like* sums. In short, we wanted the bound of 0 4 -n for

said sums taken over intervals, I, of length of order n and for t of

the order of 1/n.

The available method for handling such sums is that of Hermann

Weyl. Realizing the intractability of sums of exponentials of

quadratics, he reduced such ýzums to exponentials of linears (geometric

sums!) by simplg multiplying by their conjugates. Unfortunately,

however, his method leads to bounds like OJn l--T• instead of the OJW

that we desire.

To see the emergence of this logn factor, let us examine his

procedure in somp detail. Assume that I is an interval of length Sn

and write

S e=tk so that

s a S9 e k C I2 l 7 Z

-6-



If we then write k-j=v, so that K+j=2k-v, and call I. the intersection

of the two intervals, I and I translated by +-v, we obtain

a

(1.) ISH =Ž •__. e-1v Z e
2 ±tMv.

But here is the rub: one has the choice of throwing away the

factor e-lt  by 'c'ashing through" and thereby losing accuracy, or

being stuck witt the same intractable sum of exponentials of

quadratics. Weyl opted for the *crashing through.6 The resulting bound

is (with n,=lI'i ),

n 2< n-< n if o<t -a- e.g.)

and thereby emerges the onerous logn.

V Our approach, then, is to make the other choice and face the

troublesome e-L'v , the trick being that this sum, thougt still

intractable, can be directly related to our original sum. An es-timate

of the desired quantity is given i trms f i tsel f, and this will

prove effective.

So let M be the exact bound for L est)

L kel

10IT over all intervals, I, of length <n and all real quadratic

polynomials, P(k), with leading coefficient t#o. We will first treat

the restricted case where o<t<1T/2n. The general case will follow from

' this one since this says nS' T/2t so that a general sum obviously

-7-



splits into 2-nt/ P51 of these restricted ones. Our aim is to show here

that M=O(t- 1 --2 ) arid this is the promised 'Gauss-like" bound since our

real interest is in the case of t of exact order 1/n.

To begin with we need the following well known facts.

Lemma 1 (Summation by parts):

STakb. << PS(ak) V(bk) where PS (partial sum bound) is

Max -- a and V (total variation) is

min( 1bj, jb4) + j I b -

(In particular, it the bk are monotonic and of the same sign, then

SV~b. = Max(Ib11, lb,I)).

Lemma 2 (Gibbs" phenomenon) The partial sums of the series

5kO

• are uniformly bounded bq 2 (not by 1T/2, which might be guessed since

this is the Fourier series of (fT-O)/2 on o*!21T).

Letting I=[r+l,r+m1, where m~n, the same algebraic

manipulations as before lead to

rn V`-~ v ie ?

--8--
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with '9 = a+(2r+l)t, A = a+(2r+2m+l)t.
To estimate the right hand sum, we split it into

SI = and 62=2 -

For S2, we use our Lemma 1, with the a, the numerators, and the b,=

1/sin vt. The PS term is clearly bounded by 2M and the V term, by

- monotonicity, is bounded by

I <

s -

Altogeth':r, then, we get

To bound St, • different tack must be taken. We break S,

further into the two sums

'" Im - and I _ .. ..

In both cases, the dropping of thc quadratic term in the *xponent

=aUsQs an error or <<vAt ini each term of the numerator. Thus, each of

these su.a,5 is replaceable bU a sum

T S•f - -VC ,ith an error

---n v t

r-9



Finally, we must effect the estimation of our two sums T.

This is achieved by writing it as

T_=__E_~ V SirVC (I"
4-6-' VV4 V rt

The first of these is bounded by 21t by Lemma 2, and crude methods

suffice for the second sum. Since

---- < x (or sin x >.1

in the interval (o,1T/2) (fun for the reader?), we obtain, by crashing

through, the estimate

E vt<1 for this second sum.

Altogether, then, these many bounds combine to give

el > 4 *÷WM.b) < n+÷TMt +* +÷ 2,

and by picking a and m judiciously, this means that

Hence, as promised, we have estimated our bound, M, in terms

of itself. Finally, then, we write this as

-1 •-



(M- < n anid obtain M < -11 ~+Ž?--
tArtU

which is what we desired for the restricted sum. For the general sum

we need only multiply by ý.'ý-Land obtain

M< I +4n~rfF.

Indeed, we have saved our precious logarithm!

Extension of the above results to the case where P(k) is a

third degree polynomial, and then to arbitrary polynomials, will be

pursued during Phase II.

I

-11
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III. L4 NORMS

Investigations were continued into the L- norm of polynomials

with coefficients +1. Revisions in the previous paper [35] were made,

and the revised paper, which is Appendix B in this report, will appear

in the American Mathematical Monthly.

To describe the new results, we again employ the notation of

Appendix B. Thus,

P(z)= Ekzk, each <u=1 or -1, z=e-1", 0<0<1.

As shown previously,

)JPI)

A straightforward computation yields the lower bound n 2 +2[n/2] for

this sum. Also, by considering -P(z) and P(-z), it is clear that,

without loss of generality, it may be assumed that k.=(=+1. Using

this, an exhaustive computer search for the minimum L4  norm was made

for n<22, on an IBM-XT compatible, with the results appearing in Table

1. Note that the lower bound n 2 +2[n/2] is achieved, with a unique

combination of Vs, for n=3,5,7,11,13, and it is also achieved# but

not uniquely, for n=4. Also observe that the number of computations

§ •required to evaluate the sum grows very rapidly with n, and the

exhaustive search becomes impossible, even for the largest current

computers, when n reaches about 30. Thus, other methods are necessary

to decide the minimum L' norm of cuch polynomials and to possibly

answer the Erdos question mentioned in [3S]. Work on this problem is

antinuing.

L -12-
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IV. NOTCH FILTERS AND NULL STEERING

Investigations were also continued into notch filters

employing coefficients of equal magnitude. Revisions in the previous

paper E163 were made, and the revised paper, which is Appendix D in

this report, has been tentatively accepted (pending approval of the

changes) for publication in the IEEE Transactions on Acoustics, Speech

and Signal Processing.

The new results in this area involve the design of notch

filters with multiple notches, but still with dynamic range equal to

1. The basic idea is to again begin with the function P(O-) of El ],

but instead of removing the first N terms (i.e., all terms with k--O),

as was done in [1 ] to obtain Q(01, all terms for several values of k

are removed. This results each time in a notch filter, with the

number of notches equal to the number of k's that are removed. Also,

as all nonzero coefficients have magnit4de one, these remain filters

with unit dynamic range. The worth of this method may be seen in the

graphs an the next 18 pages, which exhibit filters of degree 8 to

2024, with from I to 4 notches.

Another previous paper r173, dealing with the important

subject of null steering, required revision. This was accomplished as

part of the current effort, asid the resulting paper, which is Appendix

E in this report, will appear in the February 1988 issue of the IEEE

Transactions on Antennas and Propagation.

Wl -15-



A Single Notch Filter, Degree 8
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A Single Notch Filter, Degree 35
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A Single Notch Filter, Degree 99
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A Single Notch Filter, Degree 224
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Degree 483
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A Double Notch Filter, Degree 463
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A Double Notch Filter, Degree 483
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A Triple Notch Filter, Degree 483
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A Quadruple Notch Filter, Degree 483
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A Quadruple Notch Filter, Degree 483
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A Quadruple Notch Filter, Degree 483
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IP(0) , Degree 2024
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A Double Notch Filter, Degree 2024
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A Double Notch Filter, Degree 2024
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A Triple Notch Filter, Degree 2024
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A Triple Notch Filter, Degree 2024
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A Quadruple Notch Filter, Degree 2024
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A Quadruple Notch Filter, Degree 2024
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V. APPROXIMATION ERRORS

Another problem considered was the development of new methods

of incorporating Doppler into standard models of a target moving with

respect to an arrag. In order to make the question mathematically

tractable, the simple case of a target path parallel to a passive line

array of equally spaced elements was analyzed. Generalizations of the

concepts described herein will be explored in Phase II.

Thus, suppose a moving target is generating a signal s(t)

which is being received by an N-element line arrag with interalement

spacing d. Let r-.(t) be the distance at time t between the target and

P the n-th array element A,(l<n<N), y be the perpendicular distance

between the target path and the line of the array, c be the speed of

the signal, v be the speed of the target, and T,(t) r,,(t)/c be the

time delay from the target to A,. Neglecting Doppler (and noise) for

the mooment, the receivad signal at A. is a,(t)=s(t-T,,(t))/r,(t).

The Doppler effect can be represented by a multiplicative

tfactor u in the time variable, so that s above becomes s(ut-T,,(ut)).

If u were constant, the required transformation of this factor into

frequency domain would be simple, namely, the Fourier transform S(w)

of s(t) would become (1/u)S(w/u). However, in actuality, u is a

function of both n and t, u=+rý,/c. Here, rý, represents the rate of

change of r.,(t) with respect to time and is negative when the target

is approaching A,,. Onc' approximate 6et reasonable method of dealing

with the variable Doppler in to assume that for each n, u changes

exactly once as the target moves, with this change Gac.urting at the

time t. when the tarqat is exactly opposite the middle array element.
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Letting x(t) be the target location at time t and nl=E(N+t)/23, the

situation is given in figure 1. g*; r4

/ ,-- / V% MZ

Figure 1

From this figure, clearly

x(t)=x(U)+vt and

r" (t)3.=+(x(t)-x(t.)-(n-n•)d)O.

pA To obtain a potentially useful estimate of r., so as to

estimate u, let 4'.-1 if t<t., dT=+I if t>t., f be the length of the

time interval over which the signal is measured, and r be the average

value of all rC.(t),

r= ,rw(t)dt.

Applying the Mean Value Theorem to the above equation for rn(t) yields

__ _ -"_ , .= __ _i -

where r. = Y+(x(t)-x(t.)-(-n9)d)= and -L is between n and nO.

Approximating q by (n+n*)/2 and using

r.-rw=(n-n')d Qn-n*)d-2(x(t)-x(t.))) gives

;-*• , -.. .____ _____ ____

4 (n(-*) - • o', C• • L r•

Since r, (t)=Y=+(x(t)-x(t.))M,

v.CfvVg/7Z v V.
W• Ir-y,. •. -••• •.
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Combining the above, we see that

- " + (n-n)dv.

SFinally, letting uW be our approximation for u, so that

u~ ~ 41•[ W- n-n)d],

Ir r

the Fourier transform of s(t) now becomes (1/u-)S(w/u ), and this

quantity is employed in the processing of the received signal.

New methods of accounting for the effect of wavefront

curvature upon beamforming were also considered. A preliminary result

is given below, and this effort will continue in Phase I1.

Referring to figure 2, the receiving array is again a line array

of N 6qually spaced elements, with interelement spacing d. The distance

from a particular source to the n-th receiving element is denoted bW r+Y,

(with xF=O), and is the indicated angle from the first arraW element to

the source.

r+ x

N race;,;,

Figure



S(r+.(")L=r-o+ ((n-1) d)'&-2r (n-1) d cos , i

Assuming that the array length<<r and. neglecting all terms beyond the

first order, (1) yields

,Axr((n-l)d)"/2r - (n-t)d cos ,(

Letting %4 be the voltage response of the n-th element, and normalizing

so that R7=1, it follows that R&=r/(r+xq). Now, with vn denoting the

output voltage and an the shading coefficient of the n-th element, and

assuming a sinusoidal input of frequency w, it follows that the output

voltage of the array is

l V nLav'j an(r/(r+xn)) exp(jwt) "xp(2T1jx,/X) (.

Here * is the wavelength of the source, so that Z±-r!xq/X is the phase

delay from the first to the n-th array element.

In most cases values for V will be obtained computationallg, as a

closed form for the sum in (- ) is usually impossible to obtain.

However, if the shading coefficients a. are all 1, and it it is assumed

that the xY increase linearly from x, to x., then the closed form

solution for V is

where u=(N-1)d'/2r - d cos

To derive (4), observe that the assumption that x, increases

linearly from xT (=C) to xw, when combined with (2), yields

4•



v1- I (N-1) d ,nN-1 N U) (-z rI.~JY

with y, defined as in (4) From () the fact that all an =1, and the

assumption that array length<<r, follows
(h 1).-Y, j (-y j-

Defining

(R)7' (•' I-e U

it follows from (6) and the termwise differentiation of (') that

Since

I __________- $; ( rr, R -V iI

elrj Y,, U ;," 7T

--+ .%, is an immediate consequence of (t) (r1? , and (8).

Fiqure'5 Configuration for the Fresnel Approximation
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Next we analyze the error in the Fresnel Approximation

which, for R-r in figure 3, is

R-r;v sinO+(vacos2e-)/2r.

This approximation, useful when v<<r (and even more useful when-9-is

small), arises by truncating the power series expansion of the square

root in the equation

R=r 1+4 +- sin-

To estimate the error in this approximation, we require more detail in

the diagram, as in figure 4.

Ir

Fi 4

By the law of sines,

v/sin(C%+I)/2)=(R-r)/sin(O'+/2), o0

Sv/cos(iY/2)=(R-r)/(sinOf cos*V/2+cosOsinrI/2), so

ý_X'~~~ 4_4,L t



R-r = v sinrO-+ v cos-r tan'i/2=v sin-e+ v cosO5-(1-cos-I/sin'l". (*)

From the law of cosines, cos 9' =(r 2 +R 2 -v 2 )/2rR, and from the

3 aw of sines, v/sin1'=R/sin(-e+WV2)=R/cosfr-, so sin-V~vcos1O/R. Inserting

these in the expression for R-r, we get

R-r = v sinr$-+ v cos& (R/v cosT)((1- v-

sin- + R- n'O- +

Denoting the desired error by E, we have

E=R-r-v sint-v~cosý'ýý/2r

VVS=v=a( 1 -cos2O- ( R-r ):2 /vý)/2r

(sinrO-- - )(sin- + V-)

(-cos-& tan1}/2) (2sinO- + cos•r tanr'/2,

where the last equality follows fr+im (*). Our estimate comes from this

last expression. O0-b.erve that for fixed v', the maximum of tang'/2 will

occur when •O=-•l'l, i.e., where the situation is as in figure 5.

U1.140



Figure 5.

Thus, lfanl/21Vv/2y, so that

Also, for small enough -, we certainly have jsinc•v/y, so the final

estimate for this Fresnel Approximation error becomes

We now obtain a similar estimate for the near-normal Fresnel

Approximation. Again referring to figure 3 above, this approximation

Sis

R-rx((x+v) 2-x 2 )/2y=xv/y + v2 /2y.

It arises by differencing the truncated power series expansions of the

square roots in

R-y l+((x+v)/y)2 , r-YIj+(X/Y)3M.

Since near-normal incidence is being considered here, to estimate the

error we begin by assuming that fxf<v. An exact equation for R-r,

also given above, is (assuming 0>0)

R-r-xv/r + (v 2-(R-r) 2 )/2r.

Thus, the error which we wish to estimate, E*, is

E*=xv(l/y-I/r)+v=(l/Y-1/r)/2+(R-r) 2 /2r

* Note that E*>O, so that the exact value of R-r is less than the

MN1N'l I VA VVWV



approximate value,

R-r<xv/y+v2 /2y<3v 2 /2y. Also,

r-y=xO/(r+y)<x 2 /2y.

Putting these estimates into the above expression for E*
S~yields

O<E*<xýv/2ry 2 + x~v2 /4ry 2 + 9v4 /Brym.

Since x<v and r>y,

O<E*<15v 4 /8y3 z
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The presence of errors resulting from such causes as clutter

scatterer returns, element thermal noise, electronic counter-measures,

antenna location errors, and multipath effects often gives rise to

instability in nonlinear high-resolution beamforming techniques. One

reason is that these methods can place undue emphasis upon unstable

eigenvectors of the noise covariance matrix [113. Hence the question

of how errors in the entries of the noise covariance matrix effect the

basic properties of an array, such as its gain, is of interest.

Preliminary results in this regard may be found in Byrnes and Sullivan

E19], and a continuation and expansion of these ideas is presented in

Appendix F.

Beamforming enables an array to act as a spatial filter, by

enhancing detectability, resolution, and directional measurement of

plane wave signals. There are certain applications, however, where

beamforming can offer only peripheral assistance, and other methods

are required. An important example in this regard is low-frequency

detection in the ocean. Propagation loss modeling is a fundamental

tool applied to the detection of targets at medium to long ranges, and

the Parabolic Equation Method (PEM) has recently become a basic

technique in the attempt to improve the solvability and accuracy of

such models. Our investigations into the PEM, including the discovery

of certain inaccuracies in its derivation, are described in Appendix

C.
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VI. ROBUSTNESS

We now report on additional progress in determining the

robustness of trigonometric polynomials with unimodular coefficients.

S As indicated in [183, we do this by estimating the maximum of

trigonometric polynomials with randonm coefficients. These random

polynomials represent the deviation in frequency response of a linear,

equispaced antenna array cauised by coefficient inaccuracy in the basic

unimodular polynomial of the array.

Let us considev -tv 'his exposi.tic•n the random cosine

polynomial

.Pit,w) = EXk(W) COS kt,

where the Xkare independent, standard no-maf random variables, denoted

X. Li.d N(0,1). Our results apply immediately to the sine polynomial

NXksin kt and may also be generalized to the rarý-om trigonometric

polynomial FXce.k*.

We define

M(w) = sup IP(tw)i

and we wish to estimate P(ow,<M_•(.). Note that n, the degree of

P(t,w), is a fixed, positive integer. Simple upper bounds for P(Mr>O(j

were obtained in our earlier work, and we now seek a lower bound for

this probability to complete our estimation. In the future, we hope to

expand this work to include more general random coefficients. For now,

we limit ourselves to the normal case.

We give two results. The first is less precise and less useful

than the second, but we include it to introduce a method of promising

simplicity which we hope to exploit later. The second is a
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generalization of a result of Salem and Zygmund E383 to our case.

After stating and proving these results, we shall compare their

precision with other similar estimates.

Proposition 1: (1) PCM>A3 > 1 - J where 8<4<6ýii2,

or equivalently

d4)

(2) PCM<A< where 0<4 < Vn/2.

Proposition 2: Let &(U,1). Then

I1) K•M> Vn- -1gn +14-77 + •-S 14

-4) 1~Ž __ %'%

In particular, if €6 = (logn)- 1 ,n>3, we have

-ec Ift V> ý-I(2) ~ ~ ~ ~ ~ c$ 2~>VnT-n>--
a.* V'% 4- T-Z.

Proof of Proposition 1:

We prove Proposition 1 (2).

Let f > M. PMM<=5)=P(-- Ml>- 6 / 2 =PC e > >e/ .

By] Markov's Inequality,

PEM<• 3<e1- E(e ). (9)

Evidently, M=(w)>Pý(t,w) for every t4L[,2TI", and since

P(tw)-N(, •_Z. coszkt), we have

"--45-
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.- ,- --,-,X2 (chi-square with one degree of freedom).

Therefore, using the fact that the moment generating function o :f a
I ~Xý ran dom var iab le is f(• =/•'• or •< /2.

E(e <E(e _=E (10)

Combining (9) and (10) yields

P</3< -

Now let us find . >B and •4C0,21TI which minimize the right side of

R" •the above inequality. ClearIy, t=3 is the correct value giving

z.cos 2 k-O=n and thus

"~~~~~V M.. <'5 =h < 7)1

To find wh ihich minimizes hk, ), we have

h'(=)~'~ X ("•7 2 ,J :
7S:

Thus, h I? )=iJ *---1+ n1--- =n > ' -•

and is obviously a minimum point of h. To insure • >0, we require

Vl--and substituting the critical value of 7 in equation (1, we

have

giving the result.
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Proof of Proposition 2:

We follow the method in Salem and Zygmund C38], modifying

their results to fit our case. We begin wi h a preliminary lemma.

Lemma 1: Let Q(w) be a non-negative random variable satisfying

E(Q)>A>O and E(Q=)<(B where E denotes the mathematical expectatioii.

Then, if ck(0,1), P(QŽ•A)>(1M-d)A=/B.

proof

Put this, Q• )ustAvr. Then 5 Q(w)dP(w)s shAP(Mhe)oA

~QdP ;n2QdP - QdP > EQ-,SA >A-&4 = (-4A

Also, yQdP <~ 12d6) (Q2dP)

Combining the above inequalities, we have (1-B)A<PQV)"2 B which

yields the conclusion of the lemma.

MM We wish to apply lemm~a 1 to the random variable

I (w)= 4~dt.

"To d" this, w must verify that T(w) satisfies the hypothase% of the

lemma, atd we must obtain the constants A and B.

B~i Tonelli's theorem

E(I)= E(e )dr - dt

• -47-



V
using the form of the moment generating function of P't,w) already

Y))

obtained~. With the simple identity cos~kt =•[l+cos2kt], we find

EU) e~
rek

> (1+-•-_cos2kt)dt e

So we have E(I) > e•r A in lemma 1.

We now require a number B such that E(IF)<B to satisfy the

second hypothesis of lemma 1. To do this, we write

12 (w) I a CJL J

using Tonelli's theorem.

P(t,w) + P(Tw) = • Xk(w) (cos kt + cos k't')

SN(0, •-(cos kt + cos kT)2)

because the sum of independent normal randon variables is normal. We

thus have that the moment generating function of P(t,w) + P('tw) is

Then ,

SE(12) =•e d t d•t:
4 IT

Now (cos kt + cos k<V)= I+' cos2kt +- cos2kI +2cos kt cos kW.

Put S 4S(t,-) cos~kt +-cos2ki+ 2cos k t cos kv)
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This gives

E(1 - e(;L dt dZ. (12)

To bound the final integral, we will use lemma 4.2.2 of Salem and

Zygmund which we state for functions of two variables.

Lemma 2 (Salem and Zygmund)

Let g(x,y), a~x~b, c~y:d, be a bounded real function. Suppose

that jg(x,y)t•A and (b-a)- 1 (d-c)- 1  g2 (xy)dxdU = B. Then, for any

positive number u,

S(b-a,-I(d-c)-" • g e-'--'Udxdy 1+urF< ÷ e"^

In the case when g(x,y)dxdy 0, this inequality can be

replaced by

(b-a)-'(d-C)-- e-=€"-w'dxdg 1+Al e"^.

We apply lemma 2 to the function S=S(t,t) for •t<2lT,

o. iY To verify the necessary hypotheses, first note that

The set of 3n functions Ecos2kt, cos2kt, cos2kt cos2kT :k=1,,n] is an

orthogottal system over the square of integration. This leads to

i 1 S2(t,¶)dt dli

PU -I'

A;,9

N ,Yq ý



=( ý cos 2kt+• cos22k1+4cos2kt cos~kT)dtdy

S= ' +1 n -f n = B of lemma 2.

Evidently, IS(tT)J) 3n=A of lemma 2. Thus, the hypotheses of lemma 2

are satisfied and we obtain', with

;(r 11 r

7e dtdr < 1+ e

Applying this to equation (12) gives

E(Iz) < e [I+ -(-" e ] = B of lemma 1.

Recall that we have obtained E(I) > e- A of lemma 1. Thus, we

apply lemma 1 to obtain

P( I > Ce~ )> for c(0I.(3

To prove proposition 2, we note that for every )' >0, tEiO,21'i]

and w, we have e < e Applying'- dt to both sides of the

inequality yields I(w)<e for each ? >0. If we use this with (13),

iN we get

-> P i > e > .. _

* -50-
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Now put A=4 Vý-in the inequality to obtain proposition 2(1) and

then substitute c =(Iogn)- 1 , n>3, to obtain proposition 2(2).

Discussion of Results

sWe now examine propositions 1 and 2 and compare them to other

similar estimates. An excellent standard of comparison is the recent

asymptotic result of Turkman and Walker [44] that

lir P expl-e-'3

I for every real number x. Roughly, this says that for large n, M-M, is

centered near \/n -Tog with dispersion of the order of •V• . The

difficulty in applying this result is that, for a given n, it is not

'i known how close the distribution of

is to the limiting distribution.

Comparing this result to Proposition 2(2) shows ihat our

centering constants closely resemble those of Turkman and Walker and

suggests that the bounds obtained in Proposition 2 are indeed tight.

In addition, the lc-wer bound of Proposition 2(2) is better than a

Ssimilar bound obtained by Gersho, Gopinath and Odlyzko E22] in the

second part of their theorem. The Gersho bound, however, applies to a

more general class of random trigonometric polynomials. It is obvious

that the bounds of Proposition 2 are much superior to those of
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Proposition 1, which applies only when P< Vn/2, which is far below the

central values of M. Proposition 1 has been included only to

illustrate a simple but promising method which we hope to exploit in

the future.

The future program is to generalize the methods of Proposition

2 to trigonometric polynomials with independent random coefficients

which are not necessarily normally distributed. Of particular interest

- is the case of uniformly d&stributed coefficients which represent

i • digital or round-off errors. While the applicability of the methods of

Salem and Zygmund to the attainment of an upper bound for P(M >c() has

been noted by Gersho, et al atA~d others, nobne, to our knowledge, has

used these methods to obtain a lower bound as we have done in

i Proposition 2. This development offers hope for improved probablistic

estimates of the maximum of trigonometric polynomials with general

random coefficients.

ýI
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The L1 Norm of a Polynomial With Coefficients +1

Donald J. Newman and J. S. Byrnes
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A classic unresolved question regarding polynomials

P(z)= .. nz

with coefficients is whether the maximum modulus of such a

polynomial on the unit circle can be n'/ 2 +o(n' 1 /). As shown by Kahane

[3], if complex coefficients of modulus I are allowed then not only is

- it possible for this property to be satisfied, but the minimum modulus

can be nl-a+o(n±/2 ) as well. Specifically, Kahane proved that for any n

there is a polynomial of degree n with coefficients of modulus one whose

modulus everywhere on the unit circle is n 1' 2+O(n5 1 Olog n).

Erdts [2] had conjectured the existence of a c>0 such that, for

any pulynomial P of the types described, IIJPf>(1+c)n 1 1 =. Clearly the

Kahane result disproved this conjecture for the modulus 1 case, but the

situation for coefficients +1 rr.mains open. Employing an elegant

construction Shapiro [6,5] demonstrated the achievability of the order

of magnitude n l 2 . but the maximum modulus of the Shapiro polynomials is

about (2n)'/ 2 .

Since the L2  norm of any such polynomial is n1/2 , by the

Parseval Theorem, and the LP norm for any p<X is a lower bound for the

maximum modulus,it is natural to look at the LP norm for some p>2.

Motivated by these considerations, as well as the inherent tractability

of the L* norm, we examine the LA norm of such polynomials. As one

might exp'ect, this leads to several interesting combinatorial questions.

We provide answers to some of these, and conclude with a refined version

of the Erdos conjecture.



o iThroughout the paper n will be a positive integer, P(z) will

denote the previously indicated polynomial of degree n-i with

coefficients +1, and z will lie on the unit circle, ze: &-1 &4, _

All integrals will be over O<[0,1]. We begin with a Lemma.

o'j4-kzt,-I n

L fkz1JoJkI

(j§ c. •,(' £jk)( ~ 5
f onstant terms.

Since a constant term occurs in this product if and unly if J+k-l+m,

the result follows immediately.

Of interest is the expected value E( iPi) if the

coefficients C' are chosen at random.

Tlbegr-em E(IP[L) -2nm-n.

SJ, P!Oq!f Clearly if exactly 3 of the indices jklm are

identical, or if at least 3 of them are different, then E(C.-t

)=O. It therefore follows from the lemma that

Foil Oach of the n(n-l)/2 pairs of integers pq, fbDp<q<n,

W____



there are 4 terms appearing in (1), C 6 C being typical. The only

other terms in (1) are E , O<p<n. Since all of these terms equal 1,

E( Ipllc )n+4(n)(n-1)/2=2na-n,

,I completing the proof of Theorem 1.

We now observe the improvement that is achieved when this random

choice is replaced by the Shapiro coefficients. Shapiro's polynomials

are defined, together with his auxiliary polynomials Q, by the

recurrence formulas

rr'
P.1.(z)=PM(z)+Za Q.(z), (2)

SFor the interested reader we point out articles by Brillhart et al E13

and Mendes-France and Tenenbaum E43. The former shows that the Shapiro

S coefficients can be defined directly from the binary representation of

the order of the polynomial, while the latter relates them to paper-

folding sequences.

Theorem 2 If n=2k and P(z) is the Shapiro polynomial of degree

n-i, then

3 IPl JL4 n-(-L)"n)/3.
Profq It follows directly from (2) that

SIPM--.,(Z)2 +jo...(z)j==2(lP.(z)1- +1Q1.(z)12)

S so that, as observed by Shapiro,

[P-.(z)l I -4P.(z)i 2=29--. (3)

Now (2) and (3) uield

jP,...(z)==2--+• + 2Re(z 2 Q.(z)P.(z)). (4)



Next we observe that z is composed solely of

frequencies which are positive powers of Z. so that it can be thought

of as Q P, where P is the -reversedO polynomial of P • Thus

* SII~i.I f a~~m+ QM

Since faQP is analytic and 0 at the origin,0 f: Z_ ;9 f Re f fcrm f
I so that

Altogether then, we have

The remainder of the proof is now simply induction on k. The

result is obviously true for k-0, since P C(z)-le Furthermore, from

(5) and the inductive hypothesis

it follows that

_ __/_1_ 
_ _ _ _ 2- - ( - Z ) a s re*e r c

S - - 3 as3 _, t,(.

This completes the proof of Theorem 2.

Note that Theorem 2 implies that the L* norm of the n-1-t

degree Shapiro polynomial is asymptotic to Vri times the fourth root

of 4/3w1.07457rn" Based upon extensive numerical evidence employing

the Bose-Einstein statistics methodology of Statistical Mechanics, we

conjecture that the Shapiro polynomials do not give the minimum LA

norm among all polynomials of the same degree with coefficients ±1,

but that this minimum Lb norm is asymptotically V times the fourth

..................................................



root of 6/5-l.04664i(n. Observe that the truth of this conjecture would

imply that of the Erdds conjecture mentioned earlier, with c=(6/5)*,- I
1:. 04664.
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Abstract

The parabolic equation (PE) method of solving the elliptic

wave equation in underwater acoustics was developed to handle the case

where the index of refraction n is dependent upon range as well as

upon depth, and possibly azimuth. It is used extensively in low-

S frequency propagation loss modeling. Fundamental to the derivation of

S all acoustic PE's is the assumption that a certain commutator is

negligibly small, and may be ignored. One purpose of this paper is to

point out that the vanishing of the commutator actually implies that n

is range-independent. Thus, in many cases, the original reason for

* the PE method is defeated when this commutator is assumed to be

negligibly small. The second purpose of this paper is to describe and

analyze the current state of the art in the low-frequency applications

Sof the PE method, and to compare it to other methods of solving the

acoustic wave equation.

Key words: Parabolic Equation Method, Propagation Loss Modeling
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An Analysis of the Parabolic Equation Method

and its Applications

J. S. Byrnes

SPrometheus Inc., 103 Mansfield St., Sharon, MA 02067 and

University of Massachusetts at Boston, Boston, MA 02125

I. Introduction

Knowledge of how sound propagates in the ocean, for different

Senvironmental conditions and source/receiver configurations, is

necessary in order to achieve optimum sonar design. The estimation of

the spatial properties of the sound pressure field, as a function of

I source frequency, is the ga'l of ocean acoustic modeling. To perform

this modeling effectively, tha acoustic loss mechanisms in the ocean

must be accurately handled. These loWs mechanisms include, in

addition to geometrical spread.ing loss, bottom reflections, volume

absorption, and scattering.

Various methods of handling acoustic wave propagation problems

exist, because no individual method adequately deals with the many

Stypes of problems and conditions that one ii; likely to enc-unter in a

variable ocean environment. These methods include ray theory,

Sfastfield theory, normial mode analysis, and tne parabolic equation

Smethod. An important test of any particular method is its ability to

handle substantial variations in environmental parameters, and to

accomplish this while using only a reasonable amount of cn.mputer time.

The acoustic wave equation cannot be separated if the

environment varies in both depth and range, so that direct nutmerical

C-i



integration is required. Since the basic equation represents a three-

dimensional boundary value problem, there are currently no practical

U methods available to solve the problem in this way. Directly

integrating the acoustic wave equation, with appropriate boundary

conditions, remains impractical due to the excessive computation

times, even taking into account the recent leaps forward in computer

technology. Thus some simplifying assumptions are always introduced

! before the wave equation is solved. The parabolic equation (PE)

method is thought to represent a viable alternative, as it is an

approximation to the wave equation which lends itself to practical

numerical solution.

If. Range Independence in the Parabolic Equation Method

Study of the parabolic equation (PE) method was initiated by

Tappert and Hardin (42), in an attempt to deal with an ocean

environment in which the sound speed, and hence the index of

Srefraction, is dependent upon range as well as upon depth, and

possibly azimuth. Since 1974 the PE method has become the standard

way of dealing with this "range-dependentu case. However, this is

theoretically incorrect, as a basic assumption necessary to the

derivation of the PE actually implies that the index of refraction is

V independent ot range. To see why this is so, it is necessary to

examine the derivation of the PE in detail. A convenient reference in

this regard is E383, and we begin with equation (8) of this paper.

+2i•o s +• > + +k%(nv-l)u-0. v 38.8b

Here, r, z, and -Oare the range, depth, and azimuthal variables

respectively, u=u(r,z,e) is the (unknown) modulation of the spatially
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varying part of the acoustic pressure, c=c(r,z,4Q) is the actual sound

Sspeed, c. is a reference sound speed, n=n(r,z,O&)=c,/c is the index of

refraction, w is the acoustic frequency in rad/sec, and k.=w/c. is the

S• reference wave number. As usual,. the farfield assumption, kar >> 1. is

made.

Equation [38.8] may also be expressed in operator format:
aý--+2ikob + +--L +k n 1--1 u=@. [3B.111A-• £38.11)+k

Two seemingly different methods of deriving the fundamental PE

have appeared in the literature, one employing [38.83 and the other

E38.113. To derive the PE from £38.83, the Oparaxial approximation,"

• u. u,., is made. One supposed justification for this is the assumption

that u varies uslowly as a function of r on a wavelength scale, i.e.,

Swhich implies that lur,.<2ikluý. 1 29, p. 4 7 5 3. This

S• implication is clearly incorrect, get it is the foundation upon which

the paraxial approximation is based.

The second standard method of obtaining the PE is to replace

£38.11] with:

Q •(1+(n'•• -1+ •Ck (- rk i )' [38.121

S•-.• where the operator Q is defined by

The difference between the operators in [138.11) and C38.12) is

the commutator C=DrQ-QDr, where Dr indicates the operator of partial

S• differentiation with respect to r. Thus, in order to obtain [38.12]

from E38.113, it is necessary to assume that C vanishes (i.e., is

negligibly small). After this is done, the second factor in [38.12],

which represents the incoming stave, is neglected, yielding

LL



+ik u=ik2Qu. [ 38.143

When the square root operator Q in [38.14) is replaced by the

linear terms of its Taylor series, the resulting equation is identical

to that obtained by applying the paraxial approximation to [38.8],

namely the standard three-dimensional (3D) PE,

•- • ( n'Ar,z,0-)-:-I3u+ • >-- 38.93

To see that the two basic assumptions employed as alternative

means of deriving the PE, namely the paraxial approximation and the

M vanishing of the commutator C, are in fact the same, assuming that the

incoming wave is ignored, begin with the equivalent equations [38.8] and

S[(38.11]. Then:

uVVe=( +ik*-ik,[ I÷ (n -I )÷-- +- •-

S~~<=>(_-'-8.+k-kQuO=( +iko-ik,3Q)(•-- +ik +ikoQ)usO

<=>Curz.

D Therefore, it is necessary to assume that CPO in order to derive

the PE. However, in the azimuthally independent two-dimensional (2D)

case the vanishing of the commutator actually implies that n is range-

independent, while in the 3D case the assumption means that n is "very

itearly" range-independent. Thus, in many cases, the basic theoretical

reason for the PE mothod is defeated when the commutator is assumed to

be negligibly =aall.
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The computation required to understand this is straightforward.

First, observe that the commutivity of D with Q implies that of D with

Qa, since DQ2 = DQQ=QDQ=QQD=Q2 D. Hence, the (approximate) vanishing of

DQ-QD, implies that of D,.Q2-Q 2 D,. However,

[D,.Q2 - Q2 D,] u = EDv,(I+X+Y) - (I+X+Y)Dr] u

= 2(nn, - k.- 2 r-A D,,)u, where

X=n 2 -l+ko- D,, Y=(kr)-2 De.

In the 2D case D,=O, so Cu=8 implies that n,=@, i.e., the refractive

index is range-independent. In the 3D case, Cu=O means that

n,=D, 2 (u)/nkaL rO. Combined with the farfield assumption, it is clear

that n,00o

It is appropriate to observe that, in their discussion of the

approximation resulting from neglecting the commutator, Seigmann, et al

S~might have reached the same conclusion. A basic consideration at this

Sj point in [30] is that the term k,-' (ný-l)-In, must be negligible. Since

nýiS (and in fact n-1 at various points), this requires that nc. The

primary error occurs in equation (34) of [383, where "ma•" should be

replaced by "min,* and min in•1

Thus, it is necessary to consider the PE method, from a

theoretical viewpoint, as an altornative way of solving the range-

independent case, whereit is known to perform efficiently (see L6], for

Ne4ample), as opposed to a method of solving the range-dependent case.

For the purpose of practical numerical computation, the range-dependent

case has been attacked by approximating n with a function that is

piecewise constant in r. Numerical schemes emploging the PE method,

such as the wide-angle split-step Fourier method [43) and the wide-angle

implicit finite difference (IFD) scheme (53, incorporate
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this idea.

III. The Standard PE Method, and Alternatives

There are several basic assumptions which must be made in

order to apply the standard PE method. These include: the far-field

approximation; the index of refraction is piecewise constant; there is

only an outgoing wave; there is no scattering; the frequency is less

than 500 Hz; the propagation angle is small (less than about 150).

One way of possibly avoiding some of these assumptions is to use a

different method of solving the acoustic wave equation.

A careful analysis of the errors inherent in the standard PE

gr-thod, for the range-independent case, is carried out by Fitzgerald

[16]. The importance of choosing the reference sound speed, C;,, to be

close to the average value of the phase velocities cm, for excited

modes, is quantiiied. The PE errors are smaller for narrower bands in

phase velocities or, using the ray mode analogy, the narrower the cone

of propagating rays. Also, it is shown that the PE method maintains a

given accuracy to longer ranges the lower the frequency. Since

Scomputation time increases dramatically with increasing frequency in

the PE method, this indicates that as low a frequency as practical

§ should be employed. Also, Fitzgerald derives a compact expression for

the maximum range of effectiveness of the PE method. When this is

applied to a frequency of 100 Hz, in a range-independent environment,

with a simple surface and bottom, he estimates a maximum effective

range of 11 km. For a 10 Hz source located near the surface, so that

Sthe RSR modes are the only excited propagating modes, this increases

dramatically to 15W km. Overall, Fitzgerald shows that the PE
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method properly accounts for mode coupling when backscattering is

negligible, and properly accounts for mode propagation when there is a

small spread in mode wavenumbers. He suggests enhanced PE methods

which might work when these conditions fail, but does not discuss the

greatly increased computation time that would likely be required to

carry out these interesting suggestions.

A different approach is considered by DeSanto (131, who

relates the solutions of the general Helmholtz equation and the PE via

an integral transform, which is exact for range-independent sound

speeds. However, there is no estimate given for the err'or introduced

i • when the Helmholtz equation is replaced by the PE. It appears that

DeSanto's interesting ideas could lead to such estimates, which would

be important if they could be obtained.

An alternative approach to the numerical computatia" of the

Swide-angle acoustic field in the range-dependent case is given in [15]

by Estes and Fain. They also procaed stepwise, by emploing a fully

defined field in one vertical plane to develop the field at a plane a

fixed distance down range. The propaga&ion is composed of two parts,

somewhat analaqous to the predictor/corrector methods in differential

equations: propagation through a homogeneous space, and a correction

due to the fact that the etivieonment is not homogeneous. They

* approximate the square root operator by the terms of its Taylor series

up to order 4, but the retdils have not been coled, so numerical

evidence is unavailable. Although their method seems to avoid the

phase errors that are an inherent part of the standard (narrow-angle)

PE approach, and thus offers an improvement over that method, it
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Sappears that the recent development of the wide-angle PE supercedes

the results of Estes and Fain. Another attempt, the first order

continued fraction approximation of Berkhout [4], is equivalent to týe

standard narrow angle approximation, anc his second order continued

fraction result is just the Claerbout (wide-angle) approximation.

Fitzgerald [16] discusses the possibility of employing normal

mode theory to handle the range-dependent case, by dividing the range

* into intervals within each of which the sound speed is assumed to be

range-independent. Nate that, in view of the range-independence of

the PE method described above, this technique is also required (and is

used extensively) when applying the PE method to the range-dependent

case. This piecewise constant normal mode approach is not analyzed

* by Fitzgerald. Other possible approaches tQ 5olving the acoustic wave

equation will be discussed below,

IV. Solution Methodo1, for the Parabolic Equation

The original numerical method of solving the PE is known as

the split-step Fourier method. The basic equation of the split-step

Fourier method is an exact solution to the PE only for constant index

of retraction n. Since vertical sound speed changes are usually less

than 5%, and strong near-%urface horizontal sound-speed gradients are

roughly 0.1 r/s/km, the split-step method will often give a valid

solution to the wave Pquation for a real environment.

The split-step method of solving the PE is fast and accuratL-

when bottom effects are weak, but less efficient when bottom

interaction is strong. A viable alternative is the implicit 'ni~te

difference (IFD) method, which is usually comparativelt fast, and
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unconditionally stable. IFD is applicable when, as khe PE soluti-on is

marched out in range, the boundary information at the advanced range

step can be expressed irn terms of the known values at the present

range step. The Lee-Botse.s IFD model [25) is applicable to both

range-dependent and range-independent environments, and can handle

arbitrary surface and bottom boundary conditions, horizontal

interfaces of layered media 1Aith densities constant on each side of

the interface; see [29) and [31) for details of the treatment of

horizontal interfaces), attenuation, shallow or deep water, and

shallow to deep or deep to shallow propagation. As a matter of

necessity (as explained above), in a renge-dependent environment the

SVP can be updated only abruptly at the range steps, and cannot change

within a step, Advantages of finite-difference methods over split-

step methods, in some idealized range-independent cases, are discussed

by McDaniel [303. A complete analysis of the well-posedness of the

IFD scheme for the solution of the wide-angle PE is given by St. Mary

and Lee [40).

The split-step algorithm solves a pure initial-value problem,

by imposing an artificial zero bottom boundary condition and pressure-

release surface condition. The implicit finite difference "IFD)

scheme, on the other hand, is designed to treat the bottom-boundary

condition exacily. Furthermore, since strong bottom interaction is

often associated with a wide propagation angle, the wide-angle IFD

scheme C9 could prove to be especially useful in handling cases where

both of these phenomena occur.

The method of lines has also been employed to solve the PE.
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This technique is described by Lee and Papadakis, who call it the ODE

method. One advantage of this approach is that, if the bottom

houndary conditions are known, no subbottom knowledge is required.

The ODE techninue needs considerable computer memory capacity, but if

this is available the method is efficient. The computer memory

requirement, in fact, can be reduced by applying the Generalized Adams

Method (GAM) described by Lee, Jackson and Preiser [27]. They claim

that GAM reduces computation speed tremendously as well. McDaniel,

Saad and Lee [323 also discuss the GAM.

V. Bottom Conditions

The broad effect of bottom loss on ocean sound propagation is

an increasing loss with decreasing frequency. In actuality, the

bottom is constituted of many sedimentary layers, each acting

acoustically like a fluid. The sound speed in the bottom is usually

close to that of the water, but the attenuation is much greater in the

bottom. We describe some of the ways which have been devised to treat

the various types of bottom conditions which can occur.

One method of representing the bottom, chosen by Guthr'ie and

Gordon (18), is as a series of fluid layers, where in the ith layer

the sound speed varies as

S• ~c(z)=cj[l-2g*(z-zi)/ci ]

where cj and gi are the sound speed and sound speed gradient at the

Iq top of the ith layer, and z, is the layer depth. Their specific

e xample has 5 layers, with the fifth one having a small negative

gradient. This is necessary to satisfy the mechanics of the normal

mode starter program of the PE method, and has no effect on the

Z



solution, as its depth is below that to which significant acoustic

energy penetrates. A variable jump discontinuity in the sound speed,

of 11% on the slope and tapered to zero on reaching the ocean basins,

is applied at the water-sediment interface. This allows for greater

bottom reflectivity on the continental slope as compared with the

ocean basins, and compensates for the inability to include density in

the model. Finally, they choose a constant attenuation coefficient in

the bottom of 0.1f dB/km (f=frequency in Hz), corresponding to a

porosity of at least 65%.

It is obvious from this description that Guthrie and Gordon

*• carried out a very detailed analysis of the bottom structure and

properties before applying the PE method. As the PE method is quite

sensitive to errors in the knowledge of the bottom environment, a

similar bottom analysis will be required for any application of the PE

S method to propagation loss calculations to succeed.

When the split-step method is used to solve the PE, the bottom

conditions must be modeled in such a wag that the potential function

goes smoothly to zero at maximum depth. One way to accomplish this is

to extend the bottom so deep that the sound propagating downwards does

not reach the lower boundary within the horizontal range being

considered. This is not practical, however, because of the large

increase in the number of necessary FFT points that results. Another

possibility is to introduce a sufficiently high bottom absorption, but

it can't be arbitrarily large, since it must represent the actual

attenuation. Mathematically this is accomplished by incorporating a

volume absorption coefficient, which increases rapidly with depth



until the acoustic field becomes negligible, into the PE. In practice

a combination of these two methods can be employed, with the depth

I extension and the absorption chosen to fit the particular environment

being considered. Another method of accounting for bottom absorption

is to add a small imaginary part to the wave number in the bottom.

In many ocean environments differences in temperature,

pressure and salinity, as well as periodic deposits of sedimentary

material, create a layered medium in both the water and the bottom.

Various attempts have been made to adapt the PE method to treat the

interfaces between such layers. In several papers 128, 29, 31),

McDaniel and Lee use finite difference techniques to handle such

boundary conditions. One drawback of this work is that the mesh

S spacing is uniform, introducing computational difficulty when there

are mesh points which do not lie exactly on the interface boundary.

KI This problem was addressed by deG Gribble [12), who employed a

variable mesh spacing. An implicit finite difference (IFD)

computational technique, incorporating the horizontal interface ideas

* of McDaniel and Lee and the wide angle equation of Claerbout [111, is

currently undergoing extensive testing. It remains unclear how

satisfactory these methods are, since substantial experimental

evidence is lacking.

Although the PE iethod does not take the density change at the

water-sediment interface into consideration, so that a somewhat

greater bottom reflection loss than normal is to be expected, this is

unlikely to be a source of serious error. For example, a density

contrast of 1.25:1 causes a decrease in reflection loss at low grazing



angles of less than 0.5 dB/bounce, while a 5% jump in sound speed at

the sediment interface causes a more meaningful 4 to 5 dB decrease
E [18 3.

VI. Ice and Other Environmental Concerns

The importance of accurate knowledge of environmental

conditions, when doing propagation loss calculations, is abundantly

clear in the results described by Ellis and Chapman [14) for low-

frequency shallow water propagation. In one experiment, curves of

propagation loss versus frequency at a range of 55 km are given for

two sites; one with a chalk bottom and the other a nearby site with a

m sand bottom. For frequencies less than 100 Hz, the loss observed over

the chalk bottom was more than 75 dB greater than that over the sand

bottom! Thus, certainly for shallow water low-frequency propagation,

knowledge of the bottom conditions is absolutely essential if accurate

calculations are to be made.

A triangular ridge model has been shown by Greene and Stokes

[17) to give better agreement with backscatter data from Arctic sea

ice than a standard Gaussian model. Their model and data confirm the

observations of Mellen and Marsh 133) and Brown and Milne [7, 8, 34),

that such backscatter levels are much stronger than those in the open

ocean. This is caused by the large linear ridge-keel structures which

interrupt the otherwise smooth stretches of ice on the underside

surface of Arctic sea ice. Furthermore, smail-scale roughness, due to

the rubble which makes up the keels, is superimposed on the linear

structure.
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Since a fundamental premise in the PE method is that there is

no backscattering, it is clear from the above that propagation loss

calculations employing the PE method will likely contain very large

errors in an Arctic underice environment. One possible mitigating

factor could be the use of low frequencies, as the local

backscattering strength of a patch on a ridge is, according to Bass

and Fuks [2, p. 108], proportional to the fourth power of the acoustic

frequency. Since mcit of the published data involves frequencies

greater than 1 kHz (Greene and Stokes (17), for example, exhibit plots

• of backscattering strength at 1.81 kHz), the possibility remains that

the PE method will give reasonably accurate results in the 100 Hz

range. Another factor to consider in this regard is that PE

approximations are better at low grazing angles, which is precisely

the case for which the backscattering probability is greatest. To

more fully answer these questions, it will be necessary to carry out

detailed and precise Arctic experiments, similar to those undertaken

in the South Tasman Sea in 1975 and described by Guthrie and Gordon

C 18).

The knowledge of bottom properties and gross sound-speed

characteristics alone will probably not be sufficient to obtain an

accurate model of acoustic propagation under ice. For example, there

may be energy loss as a result of mode coupling, either from ice-

"bottom roughness where there is no deep sound channel, or from

inhomogeneities within the water column in the boundary region between

different water mass types. The latter could be caused, for example,

bU marked changes in salinity as the sound propagates past partially
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melted ice flows.

Since rays which propagate at steep angles are greatly

A attenuated by radiation and bottom absorption, low frequency long

range propagation is dominated by rays having small grazing angles.

In this environment, therefore, the standard PE is usually acceptable.

However, when the reference wave number differ-, appr-ciably from the

wave numbers of the propagating modes, phase errors are introduced in

the standard PE. These errors are not reduced by reducing the range

i step or increasing the number of FFT points in the split-step solution

of the PE. A major advantage of the wide angle PE is that these phase

errors are essentially eliminated.

The PE method has been applied to wide angle propagation by

employing a mare accurate, rational approximation to the square root

operafor Q defined above. Claerbout [11) introduced this means of

attack, by using (1+3x/4)/(l+x/4) to approximate (1+xJ', in place of

the estimate 1+x/2 which results in the standard narrowu angle PE. In

this context, "narrow angle" means less than about 150, while "wide

N. angle" is less than about 40. A *very wide angle" (less than about

* 70") PE, which utilizes a second order rational approximation for the

square root operator, also exists, but its utility has not been

demonstrated.

Boundary fil.ctuations, source directionality and waterr column

variations are three mechanisms which can introduce azimuthal

variation in the sound pressure field. The development of three-

dimensional (3D) capability in the various PE models has only recently

I been begun, and the results of realistic test examples are not

L



available yet. Siegmann and Lee [39] offer a more detailed

explanation of why such techniques are important. They also develop

estimates of ranges for which a 3D PE would be valid. For example,

their estimates mean that at 150 Hz the range must be at least 40 m,

Swhile it must be at least 400 m when the frequency is 15 Hz.

VII. Choice of Parameters

When studying ducted propagation in the ocean, there is

generally an optimum frequency to consider. Such a phenomenon occurs

because of competing attenuation and propagation mechanisms at various

frequencies. At high frequencies, scattering and volume loss simply

increase with frequency, but at low frequencies the situation is more

complex. Here the intensity of sound within the duct is affected by

L propagation and attenuation mechanisms in the bottom and otherwise

outside the duct. As sound penetration into the bottom increases with

decreasing frequency, the overall attenuation of sound throughout the

water column will increase as the frequency decreases. Therefore both

high and low frequeacies can result in high attenuation, with

intermediate frequencies having the lowest atten&ation. For example,

an optimum frequency on the order of hundreds of hertz occurs in a

typical shallow water environment.

The importance ot the choice of receiver depth is made clear

in the results of Jensen C201. He discusses a simple example of

N propagation in shallow (110 m) isothermal water, modeled by normal

mode theory, at a frequency of 100 Hz. In this case the theory and

experimental data agree extremely well. Both show a propagation loss

level that is 20-25 dB greater for a receiver depth of I m than that

L.



for a receiver depth of 50 m, over the entire range of 30 km.

The ideal vertical step size in applying the split-step

Fourier algorithm to numerically solve the PE is 0.2'sinf, where ? is

the wavelength and 0is the grazing angle. This places an upper limit

on the number of modes, and hence the frquency, that can be handled,

since computer run-time is proportional to n log(n), where n is the

number of FFT points. A deterministic criteria for the ideal

horizontal step size, Zr, does not appear to be known, although it is

certainly limited by the frequency, and the magnitude of horizontal

gradients. In practice a trial and error approach is usually taken,

where 4r is decreased until the solution converges.

It is essential to the PE method that the initial pressure

distribution over depth includes full phase information (coherent

addition of modes). Three methods of starting the PE model are normal

mode theory, ray theory, and assuming a Gaussian-shaped initial

pressure distribution near the source. The latter is appropriate for

deep water, because it filters out high-angle energy (which would be

lost anyway) and prevents aliasing of this energy into low angles

during the FFT sampling process. Initializing the PE model by normal

mode theory requires a constant water depth for the interval in which

the mode theory is being carried out, and imposes an upper limit of

about 60 degrees on the equivalent ray angle. The ray starter seems

best for propagation down the continental slope and into deep water.

In this case very high angle energy close to the source must be

considered, because of the considerable reduction in the angle during

propagation down the slope. On the basis of the requirement that
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energy which insonifies convergence zones when it reaches deep water

must be treated properly at the top of the slope, Guthrie and Gordon

[18] choose a vertical sample interval of 4z=2H/5m, where H is the

water depth and m is the highest order mode required in deep water.

Since at 100 Hz it is necessary to consider about 150 modes in deep

B • water, a step size of 12 m is called for in 4500 m water. At the top

of the continental slope, where H is about 350 m, a step size of about

1 m is adequate.

P In the extensive comparisons of experimental data with PE

model predictions described by Guthrie and Gordon [18), at frequencies

S of 63 and 125 Hz, the range step size Ar varied from 10 m on the

continental shelf to 200 m in deep water, while the depth step size 6z

varied from 6 m to 12 m, with the greater Az also taken in deep water.

However, they speculated that under certain circumstances a Az of 3 m

or less would have improved the results, but such an option was not

available to them in their model. This indicates that the choice of

vertical step size must be made with considerable care. Az must be

small enough to ensure that the highest order modes needed are sampled

properly, but not so small that computer run-time becomes excessive.

In the interest of efficiency, Az should be chosen automatically by

the model to suit local conditions.

Jensen and Krol [19] carry out a detailed analysis of the

allowable range step, 4r, when the split-step Fourier method is used

to solve the PE. They conclude that for deep water dr can be taken as

large as 100 or even 1000 m. In general, it is required to take Ar

inversely proportional to both the maximum vertical sound speed



gradient and to the frequency. Furthermore, Ar is slightly dependent

upon bottom attenuation and source/receiver depths. They recommend,

as did Guthrie and Gordon, that Ar for a given propagation problem be

determined empirically, by reducing it until a stable solution has

been obtained. Finally, Jensen and Krol observe that in a shallow

water environment it appears that Ar must be extremely small.

VIII. Comparisons With Other Models and Experimental Data

In order to determine the accuracy and applicability of the PE

method, it must be compared with both experimental data and with the

predictions resulting from other models. While agreement with other

models instills confidence in any particular method, the final check

on an acoustic model is a comparison with the results of realistic

experiments. Only then should we be convinced that the model being

evaluated includes all of the necessary and correct physics and

I mathematics for understanding and explaining sound propagation in a

I� ' real ocean environment.

An example of a complicated North Atlantic environment modeled

S by adiabatic normal mode theory is presented by Jensen 120]. The

water depth varies between 115 and 305 m, with a maximum bottom slope

of about 1. The 65 km range is divided into two distinctly different

R water masses, with two different SVP's. The bottom is also of two

types, sand and silt, with the changeover occurring at a range

Sdifferent frou that where the SVP changes. In spite of the difficult

environment, Jensen found excellent agreement between theory and

experiment. Over almost 6 octaves (50-2540 Hz) of frequency, and over

the entire range of 65 km, the maximum deviation was only a few dEs.
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If the calculation times (which are not mentioned) required to obtain

these results are at all reasonable, this strongly suggests that

adiabatic normal mode theory is a very viable alternative to the PE

method for a range-dependent environment. It should be emphasized,

however, that in this example an extremely detailed environmental

description played a crucial role in the achieved accuracy of the

modelling results.

A detailed experiment of propagation over a seamount is

described by Jensen (U203,[213), with the PE method used as a model.

Although he calls this a "strongly range-aependent environment (14'

mean slope across the mount),' the SVP remains constant over the

W entire 140 km range. Thus the common terminology would refer to this

as a range-independent case. At any rate, the agreement between

theory and experiment is uniformly good over the full 140 km rangev,

for frequencies ranging from 12.5 to 4•0 Hz. Moreover, in this case

the agreement is achieved without very detailed environmental

information. This indicates that the real SVP is well approximated

by the constant one that is assumed, and that the important physics is

associated with reflection off the seamount and with propagation in

Wi the water column. Thus these results can be somewhat encouraging for

the study of under-ice propagation, although backscattering off ice

keels and SVP changes due to salinity differences are still likely to

L • present significant difficulties, as described earlier.

Comparisons of normal mode, fast field program (FFP), and PE

wave theory models for test cases involving four different underwater

acoustic environments are described in [221 by Jensen and Kuperman. A
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split-step algorithm (PAREQ) is used to solve the PE. The first case

involves a range-dependent environment, where the SVP remains constant

for the first 20 kw, transitions for 10 km, and remains constant ag, i,

for the final 20 km. The frequency is 25 Hz. For receiver depths of

25, 250, and 4aO m the three models agree quite well over the first 20

km. The normal mode solution is stopped at this point, because of the
Ib

range-dependent SVP. However, when the FFP and PE solutions are

continued out to the maximum range of 50 km, they diverge

substantially from each other. Jensen and Kuperman argue for

accepting the PE solution, stating that Othe PE gives the correct

result in the range-independent part of the environment and be•-ause of

the mathematical nature of the PE solution there is no teason to

T• balieve that the accuracy of this solution diminishes in the mildly

range-dependent region.* We question this argument, because of the

proof given earlier that the derivation of the PE implies a range-

indopendent SVP.

The second case in -223 is a range-independent environment

with different bottom speeds. The frequency is again 25 Hz. As the

maximum propagation angle increases with increasing bottom speed, and

as the standard PE is valid only for narrow angles of propagation, the

agreement between the PE solution on the one hand, and the apparently

accurate FFP and normal mode solutions on the other hand, deteriorates

with increasing bottom speed. This offers a good illustration of the

need for the wide angle approximation to the PE, discussed elsewhere

in this paper.

Case 3 in E221 is a range-independent shallow water (100 m)

L
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environment, at a frequency of 250 Hz. With the source and receiver

depths both 50 mv the agreement between the three models is excellent

over the full range of 10 km, except for 3 unexplained isolated .pikes

in the PE curve, -hich overpredict the propagation loss by as much as

35 dB. When the source and receiver are located just off the bottom,

so that higher order modes are excited, the PE solution no longer

agrees as well with the correct normal mode and FFP solutions. The

reason for this is the increased inaccuracy in the reference sound

speed when more m-dl ar-e excited, as we discuss elsewhere.

STh• rourth case ip 1221 deals with a fairly complicated range-

• independent envirun~ent, where the bottom is sloping and has a

s6dilent layer. The frequency is 25 Hz. Agreement between the three

S.models is quite good, even out to a range of 150 km.

In addition to the results of the four test cases just

described, Jensen and Kuperman [22] list the basic numerical

parafeter5 and associated computer times for the normal mode (NM) and

PE solutions. Tho depth step Az varies from 0.5 m (case 3) to e.5 m

(case 4) for NM, and from 0.26 m (case 3) to 11.2 1 (case 2) for PE.

The range step dr varies from 10 m (case 3) to 500 m (case 4) for NM,

and from 2 m (case 3) to 100 m (cases I ahd 4) for PE. The number of

FFT points for the PE is 256 for case 2, and 1024 for cases It 3 and

4. The calculation time on a UNIVAC 1100/60 varies from 'ess than 1

Smin (cases 2 and 3) to 2 min (case 4) for NM, and from I min (case 2)

to 30 min (case 3) for PE. The PE method is particularlU slow when

there is heavy bottom interaction (30 min in case 3 and .5 min in case

4).
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Examples of the application of the IFD technique to several

problems are described by Lee and Botseas [251, and compared to

solutions obtained by normal mode theory, and by Jensen and Kuperman

[22) using the split-step method of solving the PE. In general the

solutions agree quite well. The reader is referred to (25) for the

details. Guthrie and Gordon [183 describe extensive propagation loss

calculations and experiments carried out in the south Tasman Sea in

1975. This appears to be the most definitive study to date on the

appropriateness cf the PE method in a realistic ocean environment.

The computer runs involve accurate bathymetric and sound-speed data

for ranges up to 2501 km at frequencies of 63 and 125 Hz. Among the

interesting and important results obtained were:

1. Initialization of the PE model in a shallow, coastal

environment was accomplished by a ray trace and a normal mode

prediction, and in both cases the models predicted absolute levels in

deep water that were within 5 dB of those obtained experimentally.

2. The optimum vertical sample size was difficult to

determine when running a KE prediction from shaliow to deep water, or

vice versa.

3. The assumed properties of the sediment cover had a marked

effect upon the predicted acoustic shadow of substantial underwater

features.

4. The modul failed to predict an observed increase in shadow

Sdepth with frequency.

5. The clarity of the convergence zone structure varied
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strongly with range, in certain range-dependent environments.

6. The predicted acoustics were very strongly dependent upon

the SVP, with even subtle changes in sound-speed profiles having a

marked effect.

7. At very low frequencies (16 and 31.5 Hz), the relatively

*• weak source level and high ambient noise conditions resulted in poor

quality data.

Several other detailed comparisons of experimental data and PC

predictions are given by Guthrie and Gordon [183. The reader is

Sreferred to the original paper (which should be required reading for

Anyone ir the fiald) for the precise results. We only observe here

that, although agreements between experiment and prediction Are

usually reasonably good, discrepancies on the order of 10 dB or more

a re quite common. Moreover, on occasion the errors wre so large e

to render the particular PE model being employed usoless, and

requiring ad hoc adjustments to the model (such as changes in the

bottom assumptions) to bring the predictions back into line with the

data. This clearly indicates the importance of achieving accurate

knowledge of the propagation characteristics of the region in which

one wants to employ the PE method, before the actual work is carried

out.

Jensen and Krol C19) give propagation loss predictions for

5 I several cases, employing the PE split-step model, a normal mode model,

and a ray-tracing model. For a deep water (5•00 m) range-independent

case, with a frequency of 10 Hz and a range of 65 km, the curves

generated by the three models agree very well. The range step Ar for

L
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the PE program is 10 m. On a UNIVAC 1106, the computation times

were 6 min for the ray program, 12 min for the mode program, and 24

min for the PE program. For a deep water range-dependent case, with a

frequency of 250 Hz and a range of 32 km, ray-tracing and PE

predictions are compared with experimental data, and in both cases

agrevaint is quite good. 4r for the PE program is 180 m, and

calculat on times are 4 hours for the ray-tracing program and 28 min

tor tht E program. For a shallow water range-independent case, the

results of a normal mode model and the PE model agree very well.

KHaiaver, a Ar of 2 m is required to obtain a stable solution for the

SPE model. This small range step results in a calculation time of 3.5

hours for the PE program, whereas the mode prograra takes less than one

min to execute.

The results of several numerical computations are shown in

U IC]. They all deal with the case where the SVP is range-independent,

and the normal mode solution is used as a reference. For a narrow

angle (5.50) test case, agreement between the normal mode solution and

Sthe PE solution employing the IFD scheme with interface is quite good.

The phase error in the standard PE is evident in a wider angle (190)

test case, but the wide angle PE gives excellent agreement with the

normal mode reference solution. For a very wide propagation angle

(70), no available PE snethod produces a satisfactory result.

Bates [33 implemented a range-independent, boundary-free

example with an SVP chosen so that the wave numbers and modal depth

functions could be obtained in closed form. The split-step algorithm

for solving the standard PE was then tested, by comparison with the
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closed form solution, for various choices of frequencies, number of

FFT points, and sound speed gradients. To indicate the frequency

dependence, for a single propagating mode at 50 Hz, a range increment

of 468 meters and 64 FFT points was sufficient to generate results

within 1 dB of the closed form solution. When the frequency was

increased to 508 Hz (and all other parameters remained the same), the

error increased to 5 dB, and at 1 kHz it was 11 dB. When the number

of FFT points was varied, with the frequency held constant at 1 kHz

and I propagating mode, a doubling in the number of FFT points

resulted in a reduction in the error by a factor of 4. For example,

the error was 42 dB with 32 FFT points, 11 dB with 64 FFT points, 2.75

dB with 128 FFT points, and .67 dB with 256 FFT points. As expected,

an increase in the sound speed gradient resulted in an increase in the

error, and an increase in the number of propagating modes from 1 to 3

caused the introduction of phase errors. It is interesting to note

that the magnitude of these phase errors was independent of the number

of FFT points, at least for the limited number of examples considered

by Bates. Also interesting is the fact that all of the errors

discussed here were essentially independent of range, for those ranges

considered (up to 10 km).

Results of a test of the wide-angle IFD model are reported in

J53. The test case is a range-independent environment, with an

isovelocitV water column over an isovelocity half-space bottom. The

1 ~frequency is 250 Hz, the water depth is 100 m, the maximum range is 12

km, and the source and receiver are just off the bottom. Because of

Sthis last condition the higher modes are mnre strongly excited, anc
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all 11 modes of this example are required for an accurate solution.

The reference solution is one gotten from the fast-field program

I (FFP), which has been compared with normal mode results and is

believed to be correct. In this test the wide-angle IFD results are

in excellent agreement with the FFP reference solution. When the

narrow-angle (standard) IFD scheme is used, the expected phase errors

appear.

Comparisons of experimental propagation loss data with

predictions made by the PE method and by ray tracing are described in

E6], for convergence zone propagation over 60 km, at a frequency of

556 Hz, with a range-independent SVP. The PE solution agreed with the

measured data to within I dB, and the ray trace solution agreed within

1.5 ciB. Note that in this case, of the first convergence zone, there

is very little bottom interaction, so that the bottom handling

capabilities of the PE method were not tested in this experiment.

Furthermore, when multiple SVP's measured along the propagation track

were input to the PE, and the resulting predicted propagation loss was

compared with experimental data, the comparison was not significantly

better than that obtained previously by employing a single SVP over

the entire track. Thus, incorporating SVP range-dependence did not

appreciablU improve the results.

Chan et al E91 point out the existence of an unconditionally

stable IF`D scheme, which discretize" the standard 3D PE by means of

central finite differences for both the depth and azimuthal

derivatives, and then applies the Crank-Nicolson method. The results

appear to be reasonably accurate, but the scheme requires excessive

-27-



computer time. In [9] they introduce a stability-generatina

dissipative term into a basic finite difference scheme for the

standard Schmodinger equation, and analyze and test the result. In

their test case this explicit scheme, using the same range step

(S.81m) as in the Crank-Nicolson implicit scheme, produces

essentially the same results, but 3.5 times faster in terms of CPU

time. The actual computation times are not mentioned. The accuracy

of the computed solutions is measured by comparing them to what is

Sclaimed to be an exact solution, u=sin('(z)exp(ime)exp(im'/(2k1r)).

However, it is straightforward to show that if this function u

satisfies the standard 3D PE, theno(=k,(n'-l). Since*< is constant

(IT/1lW in their tent case), this requires that n is also constant,

i.e., the range-independent case. in ract, the iast equation gives an

explicit relationship between X, ka, and n, which must hold for this

test case to bw valid. The test frequency is not mentioned in [9], so

it is not clear if this consideration was taken into account. The

test sound speed, however* was taken to be constant, bj necessity (as
G1• explained above),, not for "simplicity" a liedi 91

pIn f 103 Chan et al describe, in somewhat more detail than in

E9n1 various finite difference schemes for solving the PE. They
dein a *practical stability condition,* n compare trt.esal

• •explicit fitilt, difference schemes with the Crank-Nicholson method.

The greatly oversimplified equation u,=(il2ko)u,% is used as a test

S• case, with a depth of 160 m, a frequency of 500 Hz, a constant sound

speed of 1500 m/s, a range of 200 m, a depth increment of 1 m, and a

S~ range step of O.W1 m.
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Apparently this small range step was required in order for the

four methods to agree with the exact solution to within 1%. In spite

of the simple equation being solved, the lack of variation in the

environmental parameters, and the short ranga, the CPU times required

were substantial. For the three explicit schemes, these times ranged

from more than 48 minutes to almost 1 hour and 22 minutes, while the

Crank-Nicholson method took over 2 hours and 7 minutes of CPU time.

IX. Possible Advantages of the Parabolic Equation Method

Although ray theory, particularly at higher frequencies,

generally requires much less calculation time than wave models such as

the PE method, ray theory is incapable of handling diffraction. This

causes a ray theory model to predict zero sound in shadow regions

which, although unrealistic, might be satisfactory for the many

applications where the primary interest is in sound levels in the

* insonified regions. In other cases, where diffraction is important,

the PE method or some other wave model must be used, because only such

oodels accurately predict the frequency dependence of the diffracted

ln field and hence give correct field levels in the shadow zones.

In a study of propagation in a wedge-shaped ocean with a

penetrable bottom C231, Jensen and Kuperman observe that the PE method

performs a reasonably good job of modeling the modal cutoff that

occurs during upolope propagation. Adiabatic mode theory, on the

othee hand, tails to give good results in this case, because of the

penetrability of the bottom.

In the PE model both the SVP and the bottom depth and

structure are allowed to vary in range. Attenuation in the bottom is
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included, by introducing a complex sound speed.

Although the effect of ocean current profiles on sound

propagation is at least an order of magnitude less that the effect of

sound-speed profiles, the cumulative effect of current profiles may

cause significant changes in PE predictions of underwater acoustic

fields. The effect of current on reciprocity is more pronounced. It1

is easy to numerically include current profiles in the PE model, with

a negligible increase in program complexity or calculation time. In

cases where one is interested in absolute levels of propagation loss,

the ability to include currents is certainly an important feature.

bWhen relative loss levels are of concern currents would probably not

matter as much, since they would have the same effect on different

sionals of the same frequencu. However, current considerations might

very well play a role in the choice of search depth and pitch angle.

i &Phu and Tappert E353 give a detailed discussion of why and how current

should be incorporated it PE models.

The phase errors inherent in the application of the standard

-iarrow--angle PE '1ave been esentially eliminated by developmaent of the

wide-anglo PE, The keg to the derivation of the wide-angle PE is the

approximation of the square root operator, which naturally arises when

the PE is baing formulated, by a nonlinear, rational function, as

opposed to the linear approximation which yields the standard PE. A

detailed dow-ivation of the wide-angle PE is given by Siegmann,

Kriegsmann and Lee E38]. They include an error analysis, which we

believe is flawed, as described in this paper. A split-step algorithm

for the wide-angle PE appears in the paper of Thomson and Chapman
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1[43]. They point out that existing computer codes for the split-step

solution of the standard PE can be easily modified to incorporate the

wide-angle capability, with very little change in computation time.

The PE method allows the acoustic wave equation to be treated

as an initial value problem, which is amenable to a marching solution.

In contrast the elliptic equation, from which the PE is derived,

requires boundary conditions which must be prescribed on a closed

N surface. Thus the PE method is computationally much more efficient

than trying to numerically solve the elliptic acoustic wave equation.

Oil Also, it is claimed by Tappert and Hardin (423 that the split-step

Fourier method of solving the PE is unconditionally stable, even when

the index of refraction n is a function of both range r and depth, and

that the method has second order accuracy in r. Thus, theoretically

if the range step Ar is sufficiently small, the inherent error in the

solution can be made negligible. Finally, Jensen and Krol [19] state

that the PE method yields a wave solution that includes all mode

coupling and diffraction effects.

The PE method is able to handle sloping bottomt;. By

partitioning the range into increments in which the SVP is eange-

* independent, and then piecing these range increments together via the

split-step or IFD technique, the PE method is able to numerically

handle the range-dependent case.

Diffraction and all other full-wave effects, such as the

rigorous treatment of caustics, are included in the PE method. Using

the standard PE, discrete modes are propagated with the correct

amplitudes and mode shapes, but with errors in the phase and group
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velocities. These errors are essentially eliminated by the wide-angle

PE.

A range-dependent environment may be treated by the PE method,

by a ray model, or by the adiabatic approximation to the normal mode

model. Of these, the first two are generally more accurate than the

third. The computation time required increases with frequency for

wave models (mode, fast field, PE), while frequency doesn't effect the

time for ray models. The PE model requires essentially the same

calculation time for the range-dependent and range-independent cases,

while ray and mode models' time consumptions are proportional to the

number of profiles.

X. Possible Disadvantages of the Parabolic Equation Method

V -•C=iv" rnm- •t-inn timaQ reauired in a shallow water

environment have been a major drawback for the PE method. However,

Jensen and Kuperman [23] report increases in speed by a factor of 102

when the PE model is run on a dedicated computer System in connection

with an array processor, as opposed to a general-purpose computer.

This obviously makes the PE a more practical alternative when

calculating propagation loss in shallow iater.

Computation time for the PE method increases with the square

of the frequency, so that it is impractical for higher frequencies.

Another disadvantage is that is difficult to handle shear propagation

in the bottom. Also, the PE method is thusfar unable to handle

scattering. A possible method of handling volume scattering in

acoustic propagation, by means of an ordinary differential equations

approach to the PE, is offered by McDaniel, Saad and Lee in a recent
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Spaper [32). However, backscattering must be negligible for

application of the PE method.

Jensen and Krol [19) observe that steep sound-speed gradients,

such as those that occur at the water/bottom interface in shallow

water, cause excessive computer run-times for the PE method. From

this, together with the claim that the PE method handles range

dependence in a simple way, they conclude that the primary application

* of the method should be *low-frequency acoustic modeling in deep water

(no bottom effects) under range-dependent environmental conditions."

S Although the application of the PE method to shallow water propagation

•+ and the incorporation of bottom effects has been improved since 1975,

as described elsewhere in this paper, we question whether the method

this regard are described in detail above.

As pointed out elsewhere in this paper, the small range steps

necessarg in the PE method when there is a large vertical Sound speed

gradient, such as in a shallow water environment at the water/bottom

interface, result in excessive computation times. Also, as the size

of the range increment in a numerical implimentation of the PE method

is inversely proportional to the frequencg, the method rapidly becomes

too time-consuming as the frequency increases. At the current state

* of the art in coding for the PE method, the upper frequency limit,

L Y when the program is run on a computer such as the VAX 11/780, i% about

500 Hz. On a super-computer this upper limit could obviously be

raised, while on a microcomputer the highest practical frequency would

be much less than 50 Hz. However, if an efficient dedicated
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microprocessor could be developed, it is conceivable that frequencies

as high as 1 kHz could be handled by the PE method without inordinate

difficulty.

A starter solution, obtained from normal mode theory or some

other method, is required in order to initialize the PE method. This

S• can significantly increase the computation time required. Also, the

reflection that can occur due to a range-dependent environment cannot

be accounted for by the PE method, since all energV is assumed to

propagate in the forward direction.

t• The direct modeling of boundaries is not allowed for in the PE

method. Surface modeling is accomplished by making the modal depth

function reflected about the surface with a 180' phase change. Bottom

IUN absorption is accounted for by modeling the bottom as a change in

. sound speed with an imaginary part.

Ellis and Chapman, in a recent and very interesting paper

[141, describe and combine all extensions to the Pekeris model, which

has proven to be a very useful tool in the study of low-frequency

propagation in shallow water. This simple model contains all the

basics of normal mode theory, and does not deal with the PE,

Nevertheless their results are of interest for the current study, both

as a means of comparison with PE results, and for the informative

light which thoy shed on shallow water, lotn-feeuency propagattoo. tn

particular, the model aLcurately predicts the very high losses at

frequencies less than 2W2 Hz resulting from shear waves in a chalk

N bottOm. The reason that the modified Pekeris model performs much

better in this environment than the usual normal mode models appears
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to be that the shear wave speed in the bottom is roughly of the same

order of magnitude as the speed of sound in water, whereas other

normal mode models require that the shear wave speed be either much

less or much greater than the water sound speed. Whatever the reason,

the modified Pekeris iAodel gives much better results, under these

MR envi"onmental conditions, than any model based upon the PE that we

have seen. Hence, it should be considered as a very desirable

alternative to the PE method for low-frequency shallow water

propagation. 
X1. Recommendations 

for Future Work

1. Development of a dedicated microprocessor, utilizing the

PE method to solve the wave equation.

2. Determination of the speed and accuracy of the Pesogen

(Parabolic Equation Solution Generator) system, designed for shipboard

use by Tappert, Phu and Daubin. Information on this system seems to

be unavailable in the open literature.

3. Estimate the errors inherent in the PE, and in the other

adaptatirins of the acoustic wave equation.

4. Perform a sensitivity analysis, to determine the effect of

errors in the input parameters upon the solution of the PE.

5. Develop a method capable of handling a rough surface, such

aL will be encountered in an underice environment.

6. Develop a method capable of handling scattering, such as

will be, encotntered in an underice environment.

7. Develop a very wide angle solution.

B. DevL-lop a broadband capability.
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9. Improve the capabilities of PE models to handle three-

dimensional problems.

10. Incorporate the consideration of fronts and eddies in the

PE models.

11. Develop methods of more accurately measuring the sound

speed profile in an underice environment.

12. Develop more accurate methods of modeling and handling

surface and bottom boundary conditions.

13. Develop automatic step-size determination.

14. Develop the ability to handle shear waves.

15. Include multiple irregular interfaces in a practical

model.

XII. Conclusions

With the current state of the art in propagation loss

modeling, it appears hopeless to expect accurate absolute measures of

loss levels except in the very simplest of environments. However, it

is quite likely that reasonably good comparative measures are

attainable. For this to be useful when conducting a search, it is

necessary to have detailed knowledge of the environment in which the

search is being carried out, so that a basis for a valid comparison

will exist.

As described in the body of this paper, the parabolic equation

method will often be the method of choice when making propagation loss

predictions. However, as we have seen, a knowledge of the environment

is again crucial, since other methods are preferable under those

circumstances described previously.
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In general, good agreement between theory and experimental

data, whichever acoustic model is being employed, requires accurate

knowledge of such environmental details as the SVP, bottom layering,

bottom rigidity (shear), scattering, etc., as well as the range-

dependency of these conditions. However, the required environmental

information is often unavailable. Furthermore, as acoustic models

become more sophisticated they require even more extensive knowledge

of the propagation environment. We believe that the primary

diffi.ulty today in ocean acoustic modeling is the lack of

sufficiently detailed and accurate environmental information for input

to the models. To us this appears more crucial than further

refinements to the models themselves. As environmental details are

generally difficult and expensive to obtain, a knowledge of the

accuracy required in the input data to the variots models, in order to

obtain sufficiently accurate propagation loss results, would seem to

be extremely important. An analysis of this crucial question is

stroungly recommended.
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Abstract

A nearly ideal notch filter, employing coefficients of equal

magnitude, is described. Applications to the design of transmitting

antenna arrays are discussed briefly. The construction is based upon

earlier work of the author involving polynomials with restricted

coefficients.

I. INTRODUCTION

The classical mathematical problem in notch filter design is

to produce a polynomial whose magnitude on the unit circle is close to

constant in almost all directions, but which has a small number (i.e.,

1, 2 or 3) of deep nulls (*notches*) at specified points. Such

filters are applied, for example, to remove spectral lines from

otherwise broadband spectra. In this paper we produce such

polynomials having one null, with the added feature that all

coefficients have the same magnitude. For convenience this magnitude

is assumed to be one. Observe that this lunimodular" property allows

• the direct application of these polynomials to the design of

transmitting antenna arrays which are omnidirectional except for 1

null. This feature is crucial in certain communications areas, where

it is desired to null out one listener in a known direction while at

the same time, for maximum efficiency, all antenna elements are
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broadcasting at full power.

If the polynomial P(z) is of degree n-1, it is clear from the

Parseval Theorem that its L` norm (i.e., RMS value) is exactly n"2,

since there are n coefficients each of magnitude 1. Thus, for IP(z)i

to be close to constant on lzl=1, that constant must be n"=2 . The

question of the existence of such polynomials is a classic one in

mathematical analysis. Its study was apparently initiated by Hardy

[11,p.1993, and furthered by Littlewood [8,9], Erdos [5), Newman

[1,2,3,103 and others. A basic result concerning these problems was

obtained by the author [43, which paved the way for solutions, by

Kornwr [73 and Kahane [63, of two of the fundamental conjectures in

this area. We modify the construction given in [4) to produce nearly

ideal filters with one notch.

II. APPROACH AND RESULTS

Our starting point is the polynomial P, of degree N2 -I, given

by

P(O)= §exp (2TTijkN-))zJi-N, z=exp (2riO).

It is shown in [4) that P(0) satisfies:

(i) JP(mN-a2•)N for all integers m,

(ii) For any f, N-'<(<1/2, IP(Q)I=N+E for (<101<1/2, where

I El <I+2TT-A+5(MC)- II

(iii) For N odd, P(1/2N)=O(1), while for N even, P((N-

1)/(2N2 ))=0(1), and
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(iv) jP(a)l<(2+3fh-1-)N + 0(1) for all 0.

Recent numerical evidence suggests that (iv) can be strengthened to:

(iv') IP(O)i<1.4N for all &.

Thus, as N-)d, the magnitude of P is asymptotically close to the ideal

KA constant N except for the immediate neighborhood of one point.. By a

simple change of variables it is clear that this special point can be

taken anywhere on the unit circle.

If P(O) is changed by removing the first N terms, all of whose

coefficients are +1, and then dividing by zN, there results

Q(0)= - exp(2tTijkN-')zj÷-'k-%N.

This Q, which is of degree N2 -N-1, is the desired modification of P.

In fact, for-0-0 the terms in the inner sum for Q are identically Q,

so that Q(0)=8. Also, the N terms removed from P are significant only

in the immediate neighborhood of 0=0 (i.e., the special point), so

that estimates (ii) and (iv') remain true for Q. Furthermore, it can

be shown that the null width of Q is less than 2/N. These properties

together with figure 1, which exhibits 1Q(0)! in d]f's as a function of

0 for N=60 (Q of degree 3539), show that Q is indeed the nearly ideal

notch filter discussed earlier. Once again it is clear that a change

of variables allows the relocation of the notch to any desired 0.
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ABSTRACT

Several new d(signs of analytic null steering algorithms for

linear arrays are described. Two of them, the S-Technique and the

Positive Coefficient Model, allow for placing an arbitrary number of

nulls ini arbitrary directions, while maintaining main beam and

sidelobe level control. A method of incorporating these deterministic

null steering techniques into existing adaptive algorithms, offering

the possibility of increases in array performance at small cost, is

* •currently being researched.
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Null Steering Employing Polynomials with Restricted Coefficients

J. S. Byrnes (Sr. Member, IEEE) and Donald J. Newman

Prometheus Inc.

I. INTRODUCTION

In view of the well-known one-to-one correspondence between

polynomials and linear arrays with commensurable separations between

elements, as described in detail by Schelkunoff [9], null steering

questions involving such arrays translate directly into mathematical

problems regarding the locations of zeroes, on the unit circle, of

~ polynomials. Furthermore, physical and electronic limitations placed

upon the array elements, such as a maximum allowable transmitting power

or a bound on the dynamic range, imply various restrictions upon the

coefficients of these polynomials. Here, dynamic range refers to the

ratio of the magnitudes of the largest to the smallest weight, or

~ shading coefficient, of the array. Thus, the theoretically challenging

question of the placement of zeroes at specified points on the unit

circle, of polynomials whose coefficients satisfy certain restrictions,

is also a problem of strong practical interest to antenna designers.

The design of filters is another application in which such

questions arise. For example, the classical mathematical problem in

notch filter design is to produce a polynomial whose magnitude on the

unit circle is close to constant in almost all directions, but which has

a small number (ie, 1, 2 or 3) of deep nulls (*notcheso) at specified

~ points. In [5] the construction of [4] is employed to produce such a

polynomial having one null, with the added feature that



all coefficients have the same magnitude. Hence, the dynamic range of

Sthe notch filters presented in [53 is one.

This paper addresses the null steering application described

I in the first paragraph. There are several factors which must be

Sconsidered in the design of null steering algorithms. In addition to

the basic problem of placing the nulls the main beam must be steered,

• the width of the main lobe controlled, and the sidelobe levels must be

sufficiently below that of the main lobe. Control of the sidelobe

level is usually achieved by attenuating the shading coefficients as

~ one moves away from the center of the array. Often these attenuation

factors (Chebyshev, Taylor, etc.) are chosen in advance, and may not

Sbe easily altered once the array is in place. This leads directly to

a beautiful mathematical question, similar to the peak-factor problem

Sin engineering attacked by Boyd [23, Schroeder E10] and others:

Given the magnitude of the coefficients of a polynomial P, a

finite subset S of the unit circle C, and a point p<C distinct

from those in S, choose the phases of these coefficients so

that P(z)=O for all z<S, the maximum on C of IP(z)l occurs at

z=p, and the maximum of JP(z)1 on a subset of C excluding an

appropriate interval (the beamwidth) around p is as small as

possible.

S•We consider various subproblems in this paper. Research on the

general question is continuing.

If. DIRECT ADAPTIVE NULLING

Currently the most widely used class of null steering methods

is known as adaptive nulling C[,3,6,7,8,8123. Adaptive arrays have
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developed over the past twenty-five years as the preferred method of

reducing the performance deterioration in signal reception systems which

is inevitably caused by noise entering the system. These methods, such

as the Widrow LMS Algorithm and the Howells-Applebaum sidelobe

canceller, are indirect adaptive schemes, they do not explicitly form an

estimate of the directions of arrival of interfering sources or

explicitly steer nulls in those directions. A scheme'in which these two

tasks are actually performed can be called a direct adaptive algorithm.

Thus one possible approach to the solution of many of the well-known

performance problems which arise with existing methods is to complement

an appropriate indirect adaptive algorithm with the analytic null

steering methods described herein. In this way the actual noise

suppression achieved might be enhanced beyond that which would be

available through either adaptive or analytic methods exclusively. In

addition, since each execution of our analytic algorithms is essentially

instantaneous, and since a direct scheme allows much greater use of

prior knowledge, such as known jammer locations or known multipaths,

this interactive direct method offers the possibility of Lncreases in

performance at small cost. Research on this approach, which we call the

*Direct Adaptive Nulling System,* is in progress.

III. COEFFICIENTS OF EQUAL MAGNITUDE

An important subproblem of the general mathematical question

-:3-



described earlier is the case when all of the coefficients of the

polynomial have the same magnitude, which, by normalization,. we can

assume to be one. Such phase-only shading occurs, for example, in the

design of transmitting arrays which are omnidirectional except for

Sspecified nulls. These features are crucial in certain communications

areas, where it is desired to null out listeners in known directions

Swhile, at the same time, for maximum efficiencg, all antenna elements

are broadcasting at full power. Also, in order to minimize the

relative size of the quantisation steps in a gradient algorithm such

~ as LMS, the coefficient magnitudes should be kept as close as possible

to unity C7, p. 1533. Note that this 'equimagnitude* property of the

coefficients precludes the use of attenuators, with the concomitant

savings in electronic hardware.

The most elementary example of the above is the unshaded array

all coefficients are 1. In spite of its simplicity, this uniform

array is of practical importance. Observe that in this case the

zeroes of the polynomial are almost uniformly spaced around the unit

. circle, occurring at all of the n+l1* (where n is the degree of the

polgnomial) roots of unity except z=l, where there is a maximum.

At the other extreme is the case where an n-fold zero.is

required at one point. One application of this, as discussed by

i • Steyskal 1113, is to broaden a pattern null so as to null an entire

sector. Clearly, by a simple change of variables, this zero-point can

be assumed to occur at z=1. It is a strai ghtforwar6 matter to

i I construct such a polynomial with coefficients of magnitude 1; in fact,

the coefficients may all be taken to be ±1. Namely, define P(z) by:

F -4-



n-i

P(z)="•(l-z 2 ) (1)

The problem with this construction is that, althou-gh P(z) obviously

satisfies the required properties, it does so at very high cost.

Since P has degree 2--1, its realization requires an array with 2"

elements. We show in the following theorem that, for all but small

values of n, this situation may be greatly improved by allowing

coefficients to be 0 as well as ±1. Since this simply means that some

array elements are turned off, the dynamic range of the coefficients

is not affected in any meaningful way.

STheorem I Let n>l0. Then there is a polynomial P(z), of

degree less than ný, such that P(z) has an n-fold zero at z=1, and all

the coefficients of P are either +1 or 0.

rgoof 2f ThegoeM I Given n>10, choose k so that

2k>ý" (2).

Since x/ln(x) is increasing for x>e, and l/ln(10)>3/ln(2), the choi-ce

k=n 3 certainly implies (2). Actually, for any 0>0, it is clear that

for n large enough we may take k=n2-, but such precision is not

necessary here. Now, for each arbitrary subset S of the set of

nonnegative integers less than k, let

S~Q(z)=

"'-S



i •and form the vector

(Q(1) ,'1 vQ" l / ! ...

SThese are integer vectors, and the largest entry is bounded by

I • •'• m"-i <-

L
Thus there are less than k" such vectors. Since there are 24 subsets

S, and so 26 polynomials Q, equation (2) implies that at least two

distinct polynomials, say Q1 (z) and Q0(z), have the same associated

vector. Hence P(z)=Q1 (z)-Q 2 (z) is the desired polynomial, and Theorem

I is proven.

The idea underlying equation (1), which we call

5 encapsulationw may also be employed to construct polynomials with

coefficients of magnitude 1 that place atiy number of arbitrary nulls.

"Namely, we have:

-bur-m 11 For ang positive integer n, let £z.•3 be an

arbitrary set of (not necessarily distinct) points on the unit circle.

~ Then there is a polynomial P(z) with coefficients all of magnitude-i,

of degree 2"-1, satisfying P(z.)=O, 1•ým~n.

.Egnf of TheoreM 1 As indicated above, we simply produce an

explicit formula for P(z):

SM-I M- I

P(z)= TI (z2 .- p )
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It is straightforward to see that this P(z) satisfies the required

properties, establishing Theorem II.

IV. SIMULTANEOUS NULL STEERING AND MAIN BEAM PLACEMENT

In the previous section we attacked the subproblem, of the

general question stated earlier, which arises when the dynamic range

of the coefficients is required to be one. We now consider another

aspect of the original problem, perhaps of more interest to antenna

designers. Namely, how can arbitrary nulls be placed while

maintaining a specified main beam direction and specified maximum

sidelobe level? We describe two methods, the 4-Technique and the
.1

Positive Coefficient Model, of achieving these goals.

To set the problem, again let n denote any positive integer,

and let S=[z.b3 be an arbitrary set of (not necessarily distinct)

points on the unit circle. Also, let ze be a point on the unit circle

distinct from those in S. Our methods allow the placement of zeroes

of a p ynomial P at all points in S, while simultaneously having the

maximum of IPI on the unit circle occur at z=z.. Furthermore, -the

difference between IP(ze)L and the highest sidelobe can be made

arbitrarily large. As will be seen, the costs encountered in

achieving the last property are an increase in the degree of P, and a

loss of control of the dynamic range of the coefficients.

To proceed with the constructions, define the angles E0.3,

O~mn, by z.-exp(iG.), -Itk.,IT. As before, a simple change of

variables allows us to assume Oe=O, so that ze=1.

Megh 1 . The R-Technique
n

Let A=-cot-IC2 L cot(eOm/2)], z-=exp(i*),
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S and define Q(z) by

n

A straightforward calculation shows that IQ(z)I has a relative maximum

at z=1. Hence, for c a large enough positive integer,

P(z)=(I+z)="Q(z) will certainlW satisfy the required properties. It

can be shown that, in order to guarantee an absolute maximum of IP(z)1

at z=l, it is sufficient to take c-44/(]. where <=minlej.. Of course,

Sin order to further increase the main lobe level relative to the

~ • sidelobes, it will be necessary to take c larger.

Method II. The Positive Coefficient Model

For each m, l.m~n, choose the smallest positive integer k.

such that exp(ik,0.) lies in the left half plane, and define P(z) by

S Clearly P(z) has the necessary zeroes. Furthermore, all of the

coefficients of P are positive, so that the maximum of IP(z)I on the

unit circle obviously occurs at z=1. Once again it is simple "to

| further increase the main lobe level relative to the sidelobes, bj

multiplying P(z) by an app,-opriate positive integer power of 1+z.

There are two additional points which can be made about the

Positive Coefficient Model. One is that its electronic implementation

~ will be greatlg simplified as compared to that of arbiteary shading

coefficients, since the positivity eliminates the need for phase

1-1-



j shifters. A second is that some control of the dynamic rance of the

coefficients can be achieved by combining this method with the

encapsulation technique discussed earlier, if we again ignore the

• effects of 0 coefficients.

V. CONCLUSION

Various aspects of a fascinating problem in classical

Smathematical analysis, with dir'!ct applications to antenna array design,

have been discussed, and several results obtained. Foremost among these

• • are two analytic methods for placing an arbitrary number of nulls in

arbitrary directions, while maintaining main beam and sidelobe level

control. A method of incorporating these analytic null steering

techniques into existing adaptive algorithms, offering the possibility

of increases in array performance at small cost, is currently being

3 researched.

IW
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Abstract

Precise estimates were previously obtained for the error in

the optimum gain of an antenna arraq arising from errors in the

measured noise covariance matrix. It was observed that the error

estimates are a function of the character and spatial distribution of

the noise field. The purpose of the current work is to analyze this

dependence of the previous results upon the quantitative and

qualitative aspects of the noise field.
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A. Introduction

In C1] the question of the effect of errors in the measured

noise covariance matrix upon the gain of an antenna array was addressed.

Precise error estimates were obtained for the case of a linear array of

n equally spaced elements in a noise field made up of spatially

uncorrelated point sources of a stngle frequency. Note that under these

conditions the noise covariance matrix is Hermitian, positive definite

and Toeplitz. It was observed in [1] that the error estimates were a

function of the character and spatial distribution of the noise field.

The purpose of the cutvrent work is.to analyze this dependence of the

previous results upon the quantitative and qualitative aspects of the

noise field. Several of the results given below were announced in E23.

A significant improvement in the major result (Theorem C), as well av

proofs for the previously announced theorems and a discussion of their

Lmport~nce, is given herein.

hn t il B. Results

The notation will be the same as that in [I1] and C2,, so that ,

is the number of antenna elements, R is the true noise covariance
AA

"matrix, R is the measurod noise covariance matrix, E-R-R is the error

oatrix,LP 4s a norm on the space of all n x n matrics, and LiI .

For weight (i.e. =shadinge) vector W and signal vector S the gain ig

given by

6P.Rhen W is chosen to be an id4al Wiener ieight vector,

AWR S



the resulting 6 is known as the optimal gain. Since the measured noise

covariance matrix R is, by necessity, empluyed in obtaining the actual

Weiner weight vectorI
A A
W-R-1 Sj

the actual gain will differ from the optimal gain G. Denoting this

actual gain by G, it is seen that

G=

S R-IRR-IS

Note that the true noise covariance matrix R appears in the denominator

of 6.

In order to determine the effects of the noisn field upon the

gain, the following result from I13 will be employed:

Theorem A [l, Corollary I1]. For any small enough positive number

It is clear from Theorem A that what is now required is on

analysis of how the norms of the noise cz~variance n.atrix and its inverse

depend upon the noise field. As is well kncown, the detarmination of the

norm of a vaatrAx, except in very spacial cases, is no easy matto'r. Even

for the particular class of matrices consicered here (i.e., Hermitian,

positive definite, Toeplitz), precise estimates for the norm are

difficult to attain. The most tractahle norm to deal with in this

S V '



context is defined, for an n x n matri:z A, by:

~JAjJ2 = Max IyWtAxI

where the maximum is taken over all n-vectors x and y with Euclidean

norm 1. If A is Hermitian and positive definite, and if

* are the (necessarily real and positive) eigenvalues of A written in
inm~aasing order, it follows from the standard theory that

IJAý:a 2and

Hance, accurate estimates for the smallest and largest eigenvalues of R

are required.

Consider a model of an isotropic noise field plus a single point

source of noise which is generating a plane wave signal. Let Gnx be the

* power oQ the isotropic noise, •-' tho point source power, ) the

* wavelength of the noise, and asfume the array spacing to be ý./2. In

addition, define the ratio T by:

As is wll1 known EL*Blanc, p. 12, for- example], thot normalized noize

covar.ce matrix under these conditions is given by:

-- _



R- (3)

A straightforward computation shows that: .
so that IfRI1uul+Cn-l)T and iJIR--f(:.J.

If the model is altered by changing the wavelength of the point

M source, so that the array spacing remains at one-half wavelength of the

isotropic component, but not of the point source, the normalized noise

covariance matrix becomes:

TC1n

where c~ei~. ,d-array spacing, t-angle of arrival of plane wave

(t-G is endf ire), and K is the wavenumber of the point source. Note

that c....=c., and- also that c-c-, where c-set'1 ý '.

It is surprising that the eigenvalues of R are identical to the

previous case. Namely,

Theorem B. Let R be given by (5). Then the eigenvalues and
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norms of R are those appearing in (4).

Proof of Theorem B. Let I denote the identity matrix, U be the

matrix all of whose entries are 1, and V be the matrix R of (5) with all

of the 3s replaced by 1. Thus Ri(1•T)I•+7V. In addition, V may be

- factored, giving 0 -

0 0.

From this factorization it follows that

eigenvalues (C7V)T eigenvalues (U),@,O,...,U,Tn.

But the above expression for R implies that X is an eigenvalue of R if

and only if T-14), is an eigenvalue of TV, and Theorem B is proven.

Combining Theorems A and B immediately yields the desired error

estimate:

Theorem C. Let R be given by (5), and let G, G, T be defined

as above. Then, as long as E. is small enough,

I -- '1 (,.r)+,

and this estimate is best possible.

Now consider a model of two point sources of noise, generating

plane wave signals of power G,% and C%% respectively, plus an isotropic

noise field of power C,%. Let K, and K. be the wave numbers of the

point sources, ty and t. the angles of arrival of the plane waves, d the

S~F-5-



array spacing, and assume again that do=/2, where ) is the wavelength of

the isotropic noise. Defining T, dcv eq - , and fm by:

the normalized noise covariance matrix is:

-Tf1  -( -3

74f I 1

Theorem B can be applied directly to obtain an upper bound for

t IR[L. To see this, let A denote the matrix R of (6) with f,11 replaced

by dc,, and let B be R with fM replaced by q. Thus R(A+(i-K)B, so that

Clearly estimate (7) cannot be improved without additional assumptions

regarding the relative sizes of and so that in the general case

(7) is best possible.

As often occurs in estimation problems, the lower bound on the

eigenvalues of R is considerably more difficult to obtain. It appears

necessary to employ asymptotic estimates, such as the following theorem

I[Grenander & Szego, p.643:

Theorm D. Let f(x) be a real-valued, 27T-periodic, Lebesgue

integrable function with Fourier series f(x)-Zf.exp(imx). (Note that

S- For each fixed n, n-1,2,3,..., loet the (necessarily Hermitian,

Toeplitz) matrix (f..-.), m,k=1,2,...,n, have (necessarily real)

ni-



eigenvalues .. Finally, let Mz be the essential inf

of f(x), and let M2  be its essential sup (M*=-aoand/or Ma=ooare

allowed). Then!
MI <M=,, and

((n)

To apply Theorem D to estimate the smallest eigenvalue of the

matrix R given in (6), first approximate R by multiplying each f. by the

"convergence factor* 4-64 where 0<r<< and r is close to 1, so that now

-4

Applying the standard formula for the Poisson kernel, along with the

facts that the cosine function is even and the sine function is odd, toI(9) yields:

.0 -7-.

Alying, te sandard for f or theernel, along wt t

facts that the coins er fucion iseen and th iethcio sodt
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arbitrarily close to 0 simultaneously (for r close enot."h to 1), so that

the best possible lower bound for the smallest eigenvalue of R given by

(6) is I-T. Applying (1), (7) and Theorem A to this gialds:

Theorem E. Let R be given by (4), and let G- GF ,T be defined

as above. Then, as long as 6 is small enough,

and this estimate is best possible,.

Next consider a model where R is a real, tridiagonal matrix.

Thus, for some real number b:

R= (11)

L6

As is well known [Morgera and Cooper, p. 732 for example], the

eigenvalues of this R are:

2., I-~s-. ~ 1 7 ~(2)

Assuming 2b<I, in order to guarantee that R is positive definite, it is

clear that the best possible bounds for the eigenvalues given in (12)

ares

1-2b<% ,i < <1+2b. (13)

Combining (1) and (13) wý.th Theorem A proves:

S.... -a-
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Theorem F. Let R be given by (11), assume 2b<l, and let 6, jE,

"be defined as above. Then, as long as E is small enough,

'I

and this estimate is best possible.

Finally, the complete eigenspectrum for real, symmetric matrices

of orders 3 and 4, and the partial wigenspectrum for such matrices of

order 5, have been computed explicitly. By various complex algebraic

manipulations, with

I ai
~6

the follousing table may be derived:

n_______ ehVa~t4 Of Rh Et~eiweC,cPhjj ofR,

4-C± (A -QCtvt

_ _.L _IL _ _ _

Z . C(-•.)

Table 1. Eigenvalues and Eigenvectors of Real, Symmetric Matrices

jaiT
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Concentrating for the moment on n=3, assume that there is a

real-valued point source of noise of the form Gxlcos(Kd cos t) in an

isotropic noise field of power Cn'-. Defining I by (2) and setting w=Kd

cos t, the normalized noise covariance matrix is now.

R3 (14)

The eigenvalues of R. may 1e computed exactly, and the result is

that they are 1-'I, i-Tcos 2w, and 1+'Tcos 2w. Applying (1) and Theorem

A Uields:

Theorem G. Let R be given by (14), and let G, T ,T be defined

as above. Then, as long as f is small enough,

and this estimate is best possible to within a factor of 4.

A similar result holds for n=4. The complete eigenspectrum for n=5 was

not derived in a meaningful form.

C. Conclusion

It is clear from the cases examined in Theorems C through G that

the angle of arrival of a plane wave from a point source of noise is not

the crucial issule when considering the accuracy required in measuring

the noise covariance matrix of a linear array of equally spaced

elements. The overiding concern is the relationship between the power

of the point source and the power of the isotropic background noise. If



the ratio of the point source power to the isotropic power is very large,

then extremely accurate measurements of the noise covariance matrix are

required in order to get a reasonable estimate of the gain of the array.

The same applies when there are two localized noise sources in an

isotropic background, such as occurs with torpedo flow noise and

structural vibrations. Note the concurrence of these conclusions with

those of Hudson, who observes that the noise covariance matrix will

usually be ill-conditioned when there is a relatively weak uncorrelated

noise component in interference that is due to a small number of discrete

sources (less than the number of array elements) [4, p.1363.
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